• Title/Summary/Keyword: Optimum Coagulation pH

Search Result 78, Processing Time 0.022 seconds

Improving Coagulation Performance with pH Preadjustment in Drinking Water Treatment (정수처리에서 pH 저감에 의한 응집효율향상에 관한 연구)

  • Lee, Hwan;Lee, Cheol-Hyo;Jung, Chang-Gue;Lee, Yoon-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • This paper reports on a pilot scale comparison of PACS coagulation with and without pH preadjustment. The pH of the water was adjusted with carbon dioxide and sulfuric acid. Process performance was assessed on the basis of total organic carbon(TOC), UV absorbance, turbidity and disinfection by-product(DBP) precursors. Coagulation pH appeared to be a determining factor for maximum NOM removal. The optimum coagulation pH in order to decrease TOC and turbidity were pH 7. Preadjustment of pH 7 increased TOC removal to as much as 43, 47 percent with sulfuric acid and carbon dioxide. Moreover, coagulation at pH 7 caused a reduction in UV$_{254}$, THMFP and HAAFP compared to the baseline coagulation. For preadjustment of pH 7 with carbon dioxide, the percentage of TOC, UV$_{254}$, THMFP and HAAFP shows the reduction rate of 3.8, 0.5, 4.8, 9.4% comparing to the coagulation rendition using sulfuric acid. Acid addition to depress pH during coagulation decrease Langelier Saturation Index(LSI), potentially causing increase corrosion in water distribution systems. LSI for carbon dioxide and sulfuric acid at pH 6 was -2.3, -3.3. Therefore, carbon dioxide was more effective at controlling corrosion than sulfuric acid.

Characteristics of Apparent Molecular Weight Distribution and Removal of DOC by Coagulation and Sedimentation Process with Polyaluminum Chloride in Nakdong River Water (응집·침전 공정에서 PAC를 이용한 낙동강 원수의 DOC 제거 및 분자량 분포 특성)

  • Kim, Yeong-Tak;Kim, Eun-Hee;Rhim, Jung-A;Yoon, Jeong-Hyo;Kim, Dong-Youn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.125-133
    • /
    • 1999
  • The objective of present work is to evaluate the optimum coagulation conditions in order to decrease dissolved organic carbon(DOC) and turbidity at different polyaluminum chloride dosage and pH from Nakdong River water. This studies were carried out to examine distribution on apparent molecular weight(AMW) of DOC in the Nakdong River water and its coagulation-sedimentation water. On the basis of jar tests, at the optimum coagulation pH in order to decrease DOC and turbidity were pH 5.0~6.0 and optimum dosage of polyaluminum chloride were 10~15mg $Al_2O_3/L$. The removal percentage of DOC and UV-254 absorbance were 35~40%, 45~60%, respectively. In pilot plant, at the optimum coagulation pH in order to decrease DOC and turbidity were 5.0-6.5, and the removal percentage of DOC were 30~45%. Distributions of AMW in the Nakdong River, less than 6,800dalton were 60.7% 6,800~11,000dalton were 32.8%, more than 11,000dalton were 6.4%. When the polyaluminum chloride dosage was 12~20mg/L, the removal percentages of each AMW for AMW of Nakdong River water, less than 6,800dalton were 25~28%, 6,800~11,000dalton were 65~68% more than 11,000dalton were 10~60%.

  • PDF

Chemical Coagulation Conditions and Efficiency of Sewage with Al(III) and Fe(III) Coagulants (하수의 화학적 응집조건 및 응집제별 응집효율 분석)

  • Park, June-Gue;Tian, Dong-Jie;Park, Noh-Back;Jun, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.463-474
    • /
    • 2010
  • In this study, chemical coagulation conditions for treating combined sewer overflow(CSO) occurred during rainy season were evaluated by jar tests with aluminum sulfate[$Al_2(SO_4)_3{\cdot}17H_2O$] and ferric chloride[$FeCl_3{\cdot}6H_2O$]. The raw domestic sewage sampled from the primary sedimentation tank at a local sewage treatment plant was filtered through $150{\mu}m$ sieve before using. Point of zero charge(PZC) for various dose of aluminum sulfate occurred at pH 5.8-6.5, while for ferric chloride occurred at pH 5.3-6.0 in term of streaming current(SC) values. Charge neutralization ability of aluminum sulfate was bigger than that of ferric chloride. Optimum pH and dose of aluminum sulfate and ferric chloride were 6.2, 0.438mM and 5.8, 0.925mM, respectively. Removal efficiencies of TCOD, turbidity, SS and TP were 75, 97, 95, 96% with aluminum sulfate and 74, 96, 98, 99% with ferric chloride at their optimum coagulation conditions. More efficient removal of SS, TP and small particles was possible with ferric chloride at optimum coagulation conditions. Both SC values and COD removal started to increase where soluble phosphorus was completely removed.

The Condition of Optimum Coagulation for Recycling Water from CMP Slurry

  • Seongho Hong;Oh, Suck-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.415-420
    • /
    • 2001
  • Water usage in the semiconductor industries is dramatically increased by not only using bigger wafer from 8 inches to 12 inches but also by adapting new process such as Chemical Mechanical Planarization (CMP) process invented by IBM in late '80. However, The document published by International Semiconductor Association suggests the decreasing ultra pure water (UPW) use from 22 gallon/in$^2$in 1997 to 5 gallon/in$^2$ in 2012. The criteria will possibly used as exporting obstacle in the future. Generally, Solid content of CMP slurry is about 15wt%. The slurry is diluted with UPW before fed to a CMP process. When the slurry is discharged from the process as waste, it contains 0.1~0.6wt% of solid content and 9~10 at pH. The CMP waste slurry is discharged to stream with minimum treatment. In this study, to find optimum condition of coagulation for water recovery from the waste CMP slurry various condition of coagulation were examined. After coagulation far 0.1 wt% solid content of waste CMP slurry, the sludge volume was 10~15% after 30 min of sedimentation time. For the 0.5 wt%, sludge volume was 50~55% after one hour of sedimentation time. For more than 80% of water recycling, the solid content should be in the range of 0.1 to 0.2wr%. Based on the result of the turbidity removal, the Zeta Potential and the analysis of heavy metals, the optimum condition for 0.1 wr% of waste CMP slurry was with 20 mg/L of PACI at 4 to 5 of pH. The result showed that the optimum conditions fer the 0.1 wt% waste CMP slurry were 100mg/L of Alum at 4~5 of pH, 100 mg/L of MgCI$_2$at pH 10 to 11 and 100 mg/L of Ca(OH)$_2$at pH 9 to 11, respectively.

  • PDF

Effects of Characterization of Polymeric Al(III) Coagulants on Coagulation of Surface Water (고분자성 Al(III) 응집제의 특성이 상수원수의 응집특성에 미치는 영향)

  • Lee, Sun Gi;Han, Seung Woo;Kang, Lim Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.99-105
    • /
    • 1998
  • This research explored the feasibility of preparing and utilizing a preformed polymeric solution of Al(III) for coagulation in water treatment. Slow base(NaOH) injection into supersaturated aluminum chloride solutions did produce high yields of the type of Al polymers useful to water treatment applications. PACl's characteristic analysis showed that the quantity of polymeric Al produced at value of $r(OH_{added}/Al)=2.2$ was 83% of the total aluminum in solution, as showing maximum contents and precipitate was dramatically increased when r was increased above 2.35. And PACl was stable during sitoring period so aging effect was negligible. Results of the coagulation of Nakdong river waters with three PACls showed that the effectiveness of the three coagulants can be considered as r = 2.2 > r = 2.0 > r = 2.35 which are also the order of higher polymeric aluminum contents. Coagulation results for synthetic water exhibited optimum dose of 0.25mM Al, for three PACls, but above optimum dose, r = 2.0 and 2.2 PACl impaired the coagulation and sedimentation of turbidity and humic acid because of the restabilization of particulate. The effect of pH for on coagulation of Nak Dong River water showed that it had much effect turbidity and TOC removal, especially near pH 7. But pH effect was little for turbidity and TOC removal when r = 2.35 PACl was used for coagulation, that PACl had much more precipitates content.

  • PDF

Co-precipitation of Turbidity and Dissolved Organic Matters by Coagulation (응집(凝集)에 의한 탁도물질(濁度物質) 및 용존(溶存) 유기물질(有機物質)의 동시제거(同時除去)에 대한 연구(硏究))

  • Jeong, Sang-Gi;Jun, Hang-Bae;Kim, Hag-Seong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.3
    • /
    • pp.99-107
    • /
    • 1995
  • Various humic substances are widely distributed in natural water body, such as rivers and lakes and cause the yellowish or brownish color to water. The evidence that humic substances are precursors of THMs formation in chlorinated drinking water has been reported m the Jiteratures. For the reason of public health as well as aesthetics, needs for humic substances removal have been increased in the conventional water treatment processes. In this research, the characteristics of aluminium coagulation of humic acids and humic acids were investigated. The optimum pH and coagulants dosage to remove these materials simultaneously by coagulation were alto studied. The results are as followed; 1. UV-254 absorptiometry for measuring the concentration of aquatic humic acids showed good applicability and stable results. 2. The optimal pH range for humic acids removal by aluminium coagulation was 5 to 5.5, however, an increase in aluminium coagulant dosage could enhance the removal rate of humic acids in the wide pH range. 3. Coprecipitation of humic acids in the typical pH range of 6.5 to 8 in water treatment processes may require the sweep coagulation mechanism with the excess aluminium coagulant dosage. 4. Using PAC(poly aluminium chloride) or PASS(poly aluminium silica sulfate) as coagulants was able to expand the operating range for removing humic acids. 5. From the coagulation of humic substances(UV-254) and turbidity at pH range of 5.5 - 6.0 and alum dose of 86 ppm, the removal efficiency of turbidity from the reservoir water was above 90% and that of UV-254 was above 70%. 6. By using the reservoir water, the optimum condition of rapid mixing for simultaneous removal of turbidity and UV-254 absorbance was pH of 5.8 and LAS dose of 86 ppm, in this study.

  • PDF

Chemical Coagulation Treatment Using Alum and PACl in Complex Wastewater (Alum과 PACl을 이용한 응집처리)

  • Sung, Il-Wha
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.1
    • /
    • pp.53-57
    • /
    • 2009
  • In order to treat the complex wastewater containing organic compound and solids, pre-treatment system associated with molecular separation process were investigated. The reductions of COD and turbidity were obtained after coagulation processes using Alum (Aluminium sulfate, $Al_2(SO_4)_2{\cdot}18H_{2}O$) and PACl (poly aluminium chloride as 17% $Al_{2}O_{3}$). The results of study were as follows: using variable dosage of Alum, COD removal was highest at 4,000 mg/l, and the reduction of COD and turbidity was 42% and 92%, respectively. The optimum coagulation would be effective at pH 7.3 than pH 9.0 by the addition of alum at a concentration of 6,000 mg/l and PACl was add at 4.25% in raw complex wastewater with 2,000 mg/l alum at pH 7.3, the reduction of COD was reduced by 32%. But coagulation aid experiments indicated that PACl would be more effective in sludge separation ability than COD removal efficiency.

The Effects of Turbidity and pH on the Removal of Cryptosporidium and Giardia by Coagulation Process (원수 탁도와 pH 변화가 혼화응집침전 과정에서 원생동물과 탁질 제거에 미치는 영향)

  • Chung, Hyen-Mi;Park, Sang-Jung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.71-78
    • /
    • 2006
  • The removal of protozoa in the coagulation process was evaluated under the different pH and turbidity using the jar test after the addition of polyaluminium chloride (PAC) as a coagulant. Two well-known protozoa of Cryptosporidium parvum and Giardia lamblia were tested at the same time with turbidity, the critical water quality parameter of the water treatment process. Both protozoa were removed about 1log (and up to 2log) at the optimum injection of PAC. The source water turbidity and pH affected the removal of protozoa and turbidity. At neutral and alkaline pH, 1.3-1.7log removal of protozoa for low turbid water with 5NTU, and 1.6-2.3log removal for high turbid water with 30NTU were achieved. However, at acidic pH, maximum 0.8-1.0log and 1.1-1.2log were removed for low and high turbid water, respectively, at the optimum PAC injection of 15mg/L. The relation of protozoa and turbidity removals were expressed as the 1st order equation (significantly positive relation) in the most of the tested conditions. In addition, the relation of protozoan removals with residual turbidity were also expressed the 1st order equation (significantly negative relation), although the significance of the equations were reduced at acidic pH. Therefore, residual turbidity could be a good index of efficient protozoan removal in the coagulation process, probably except at the low pH condition.

Determination of Optimum Coagulants (Ferric Chloride and Alum) for Arsenic and Turbidity Removal by Coagulation

  • Choi, Young-Ik;Jung, Byung-Gil;Son, Hee-Jong;Jung, Yoo-Jin
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.931-940
    • /
    • 2010
  • The Raw water from Deer Creek (DC) reservoir and Little Cottonwood Creek (LCC) reservoir in the Utah, USA were collected for jar test experiments. This study examined the removal of arsenic and turbidity by means of coagulation and flocculation processes using of aluminum sulfate and ferric chloride as coagulants for 13 jar tests. The jar tests were performed to determine the optimal pH range, alum concentration, ferric chloride concentration and polymer concentration for arsenic and turbidity removal. The results showed that a comparison was made between alum and ferric chloride as coagulant. Removal efficiency of arsenic and turbidity for alum (16 mg/L) of up to 79.6% and 90.3% at pH 6.5 respectively were observed. Removal efficiency of arsenic and turbidity for ferric chloride (8 mg/L) of up to 59.5% at pH 8 and 90.6% at pH 8 respectively were observed. Optimum arsenic and turbidity removal for alum dosages were achieved with a 25 mg/L and 16 mg/L respectively. Optimum arsenic and turbidity removal for ferric chloride dosages were achieved with a 20 mg/Land 8 mg/L respectively. In terms of minimizing the arsenic and turbidity levels, the optimum pH ranges were 6.5 and 8for alum and ferric chloride respectively. When a dosage of 2 mg/L of potassium permanganate and 8 mg/L of ferric chloride were employed, potassium permanganate can improve arsenic removal, but not turbidity removal.

A Study on the Coagulation of Aquatic Humic Acid and Reducing Residual Aluminum (수중 Humic Acid의 효율적 응집처리와 잔류알루미늄 감소방안에 관한 연구)

  • 김수연;정문호;두옥주
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.38-46
    • /
    • 1998
  • The purpose of this study is to evaluate and compare the effective coagulation of commercial humic acid which is well known as major precursor of trihalomethane, with LAS and PAC and to quantify the residual aluminum in the treated water. Then the optimum pH, the dosage of coagulant were determined. 1. Humic acid concentrati6n, UV absorbance and color were well correlated and UV absorbance(254 nm) and color seem to be used in quntificative analysis of humic acid of same kind. 2. Optimal dosage of LAS and PAC increase as humic acid concentration increases. And optimal pH range for coagulation using LAS is pH 5.5-7.0 and pH 3.5-6.5 for PAC. Within these ranges the removal efficiency is 90-99%. 3. The results of quantification of residual aluminum in treated water shows that minimal aluminum remains on the optimal coagulation condition. But the residual aluminum increses as the dosage of coagulant is beyond the optimal range. Thus the dosage of coagulant should be chosen with the condition on which humic acid removal is maximum and the residual aluminum concentration is minimum. 4. In the water treatment process the raw water pH range is 6.5-8.0, and it seems to be possible to remove humic acid by charge neutralization not by sweep floc. But it should be considered that different commercial humic acids have different physical and chemical characteristics.

  • PDF