• Title/Summary/Keyword: Optimum Nozzle

Search Result 185, Processing Time 0.031 seconds

Effect of Nozzle Initial and Exit Wall Angles on Supersonic Flow Field in a Thrust Optimized Nozzle (추력이 최적화된 노즐의 초음속 유동에 대한 노즐벽 초기 및 출구각도의 영향)

  • Jeon, Tae Jun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.1-13
    • /
    • 2021
  • Effects of the nozzle wall angles on the supersonic flow field in a thrust optimized nozzle were numerically investigated. The combustor and operating condition of 30-tonf rocket engine was selected to study the optimum nozzle shape. The nozzle flow of combustion products was realized by the shifting equilibrium calculation for the propellant of kerosene-LOx. The change of nozzle wall angles induced different developing patterns of the internal and secondary shock wave. The optimum nozzle was obtained when the internal shock was in a specific position at the nozzle outlet. The nozzle wall angles of the optimum nozzle were very similar to those of the optimum nozzle which does not consider the shock wave.

Implicit/Explicit Finite Element Method for Euler Flows Inside the Optimum Nozzle (내/외재적 유한요소법을 이용한 최대추력노즐의 설계해석)

  • Yoon W. S.;Kho H.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.66-72
    • /
    • 1997
  • Optimum nozzle design exploiting the method of characteristic(M.O.C) has been in application as an efficient design methodology targeting a less weighted and short expansion nozzle. This paper treats the optimum nozzle design and the analysis of the inviscid compressible flow inside. Based on traditional Rao's method, the optimum nozzle design is coded with minor modifications for the identification of the control surface across which the mass flux should be conserved. Internal flow field is simulated numerically by M.O.C and implicit/explicit Taylor-Galerkin finite element method(F.E.M) with the aid of adaptive remeshing to capture the shock wave, hence improve the accuracy. Designed and calculated flow fields due to the separate analyses show that the mass flux predicted by optimum nozzle design with M.O.C is not conserved across the control surface and the sonic line should be located upstream of the nozzle throat. Rao's optimum nozzle design methodology exaggerates the momentum thrust and tends to overemphasize the engine performance loss.

  • PDF

A Study on the Optimum Shape of High-Pressure Injection Nozzle (고압 분사노즐의 최적형상에 관한 연구)

  • 이종선;김형철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.37-43
    • /
    • 2003
  • This study makes to flow analysis of computational fluid dynamics(CFD) according to the basic theory of turbulent flow regarding high-pressure injection nozzle. It also makes structural analysis to find out the structural validity of the optimum shape of high-pressure injection nozzle. It divides to two areas such as plunger areas and high-pressure injection nozzle area including plunger.

Optimum Operating Conditions of a Vacuum Nozzle Seeder (진공노즐식 파종기의 최적 작동조건)

  • 민영봉;김성태;정태상
    • Journal of Biosystems Engineering
    • /
    • v.25 no.6
    • /
    • pp.463-470
    • /
    • 2000
  • For maximum seeding efficiency of a nozzle type seeder, the performance of the nozzle should be considered sufficiently. This study was carried out to investigate the optimum operating conditions of a seeder attached the vacuum nozzle which was modified syringe needle acting on the plug seedling tray and the seed plate. Such operating factors as the hole diameter of the nozzle (d), the distance from the nozzle tip to the bottom plate of seed hopper(D) the absorbing air pressure of the nozzle tip(P) the bounding height of seed from the vibrated bottom plate of seed hopper and the seeding speed were selected based on the weight of a grain of seed(W). The treated materials were pepper seed as the flat type, cucumber seed as the oval type and radish seed as the spherical type. The optimum operating conditions of the experimental seeder were revealed as follows: 1. The height of the seed bounding from the bottom plate of seed hopper and the distance from nozzle tip to bounded seed were 5 mm and 0.5 mm at all seeds. The hole diameter of the nozzle and the absorbing pressure for pepper seed, cucumber seed and radish seed was 0.45 mm, 0.65 mm. 0.65mm and 39.2 kPa, 88.3 kPa, 58.8 kPa, respectively. 2. The absorbing pressure P was represented as P=η.4W/$\pi$d$^2$ where η was 100. The seeding speed using a 128 cell tray was 2.4 cm/s which was same transfer as 2.5 trays per minute. 3. The maximum seeding rate in case of the pepper seed was 97% the cucumber seed was 95% and the radish seed was 100% under the optimum operating conditions of the seeder.

  • PDF

Development of Vacuum Nozzle Seeder for Cucuribitaceous Seeds(I) - Design factors for vacuum seeding large sized seeds - (박과 종자용 진공노즐식 파종기 개발(I) 대립종자의 진공파종을 위한 요인구명 -)

  • 김동억;장유섭;김승희;이공인
    • Journal of Biosystems Engineering
    • /
    • v.28 no.6
    • /
    • pp.525-530
    • /
    • 2003
  • This study was carried out to develop a vacuum nozzle seeder for the automation of large seeds sowing of fruit vegetables and rootstocks. Moreover, the seeding efficiency was examined to find the optimum operating condition considering high precision seeding. The important operating factors for high seeding rate were typically nozzle diameter and absorbing vacuum pressure. The optimum nozzle diameters were found 1.5, 1.5 and 2.0 mm for Chambak, Tuktozwa and Hukjong while the optimum vacuum pressures were 8.0㎪, 10.6㎪ and 5.3㎪, respectively. Under the optimum operating condition, the results indicated that the maximum seeding rates were 97.6%, 98.8% and 97.6% respectively for Chambak Tuktozwa and Hukjong. The vibrating acceleration of the hopper did not make any significant effects on the seeding rate when the vacuum pressure reached 8.0㎪ and the sowing rate became higher with lighter seed. As the seed became heavier, the larger diameter of nozzle was recommended 1.5mm of the nozzle diameter was found to be applied for the experimental seeds. The vacuum pressure was also found 8.0㎪ - 13.3㎪ at that time.

The optimization of nozzle size for pulse cleaning of ceramic filter (세라믹필터 역세정을 위한 노즐 사이즈 최적화)

  • Choi, Joo-Hong;Kim, Jin-Hyoung;Chi, Hua-Chang;Yu, Lang;Sakong, Kyoung-Min;Kim, Young-Ae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.796-799
    • /
    • 2007
  • In the bench scale test unit consisting of four commercial filter elements, the traces of the transient pressure around the nozzle and overpressure in the filter cavity were measured to estimate the effect of nozzle on pulse cleaning. For the given pulse cleaning system, the convergent nozzle displayed better performance than the straight one. The optimum ratio of outlet to inside diameter of convergent nozzle was determined, which minimized the pulse gas consumption and maximized the entrainment effect. The angle and height of nozzle convergent part was also optimum operational condition, which is meaningful to the industrial applying.

  • PDF

Aerodynamic Optimal Design of Nozzle Contour for Supersonic Exit Mach Number

  • Mon, Khin Oo;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.335-338
    • /
    • 2010
  • A recent study for tracing the profiles of supersonic axisymmetric Minimum Length Nozzle with uniform and parallel flow at the exit section, the stagnation temperature is taken into account. The aim of this work is to add optimization algorithm to the supersonic nozzle design in order to get the optimum nozzle shape. The comparisons of the nozzle contours based on the method of characteristics are presented. The specific heats and their ratio vary with the stagnation temperature when this temperature of a perfect gas increases. An application is made for air in a supersonic nozzle.

  • PDF

An Experimental Study of Spray Nozzle Desalination Facility (담수화 설비 스프레이 노즐에 대한 실험적 연구)

  • SHIN HYUN-KYOUNG;JOO HYUN-TAE;PARK MIN-HO;PARK KYOUNG-MIN;KIM JIN-YOUNG;LIM JIN-YOUNG
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.26-31
    • /
    • 2006
  • Experimental research was undertaken to develop a domestic spray nozzle used on equipment for desalination. First, we made a test set-up in order to confirm nozzle efficiency of spray and distribution under different pressure conditions. Then, we found a maximum spray condition after verifying reliability of this facility. An optimum arrangement of the nozzle, based on the test result, was made using CATIA V5 and EXCEL.

Two-Phase Jet Flow Characteristics in the Pure Oxygen Aeration System Using Two-phase Jet Nozzle (이상 제트 노즐을 사용한 순산소 폭기시스템의 이상유동 특성)

  • Jung, Chan-Hee;Lee, Kye-Bock
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.258-263
    • /
    • 2009
  • Jet Loop Reactor(JLR), in which a two-phase nozzle is installed, is the new design technique for the treatment of high concentration wastewater by accelerating of oxygen contacting between substrate and surrounding bacteria. This numerical study of the two phase jet flow was conducted to find the optimum design of JLR. It was shown that there was a minimum velocity in the nozzle for continuous circulation of wastewater. The optimum location and the size of the draft tube for continuous circulation were examined. It was certain that the smaller the air size is, the more the effect of the mixing increases. The relation between the mixing effect and the turbulence was confirmed.

A Study on Optimum Shape of Shield Gas Nozzle for Bead Shape Control in TIG Welding using Gas Force (Ⅰ) - Design and Performance Analysis of Venturi Nozzle - (TIG용접에서 가스력을 이용한 비드형상제어를 위한 실드가스 노즐의 최적 형상에 관한 연구 (I) - 벤투리노즐의 설계 및 성능분석 -)

  • Ham, Hyo-Sik;Seo, Ji-Seok;Choi, Yoon-Hwan;Lee, Yeon-Won;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.51-57
    • /
    • 2011
  • Bead shape control with gas force process has been developed to overcome the concave back bead in pipe orbital welding. However, It is impossible to make a convex back bead using the existing gas nozzle, because it has high gas-consuming and low gas force. The purpose of this paper, to develop optimum shape of nozzle which to reduce the consumption of gas, maximizing the shield gas force with low cost and high productivity coincide the Green welding. In this paper venturi-type nozzle was designed by using the Venturi meter and compared velocity, pressure, arc shape in the flat position with existing CP-nozzle. As a result, Venturi-type nozzle's maximum velocity and pressure was improved at the same flow rate. Also heat input was increased by the arc contraction in the flat position.