• Title/Summary/Keyword: Optimum Sensor Location

Search Result 30, Processing Time 0.025 seconds

Optimization of Piezoceramic Sensor/Actuator Placement for Vibration Control Using Gradient Method (구배법을 이용한 진동제어용 압전 감지기/작동기의 위치 최적화)

  • 강영규
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.169-174
    • /
    • 2001
  • Optimization of the collocated piezoceramic sensor/actuator placement is investigated numerically and verified experimentally for vibration control of laminated composite plates. The finite element method is used for the analysis of dynamic characteristics of the laminated composite plates with the piezoceramic sensor/actuator. The structural damping index(SDI) is defined from the modal damping(2$\omega$ζ) . It is chosen as the objective function for optimization. Weights for each vibrational mode are taken into account in the SDI calculation. The gradient method is used for the optimization. Optimum location of the piezoceramic sensor/actuator is determined by maximizing the SDI. Numerical simulation and experimental results show that the optimum location of the piezoceramic sensor/actuator is dependent upon the outer layer fiber orientations of the plate, and location and size of the piezoceramic sensor/actuator.

  • PDF

A Genetic Algorithm to Solve the Optimum Location Problem for Surveillance Sensors

  • Kim, NamHoon;Kim, Sang-Pil;Kim, Mi-Kyeong;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.547-557
    • /
    • 2016
  • Due to threats caused by social disasters, operating surveillance devices are essential for social safety. CCTV, infrared cameras and other surveillance equipment are used to observe threats. This research proposes a method for searching for the optimum location of surveillance sensors. A GA (Genetic Algorithm) was used, since this algorithm is one of the most reasonable and efficient methods for solving complex non-linear problems. The sensor specifications, a DEM (Digital Elevation Model) and VITD (Vector Product Interim Terrain Data) maps were used for input data. We designed a chromosome using the sensor pixel location, and used elitism selection and uniform crossover for searching final solution. A fitness function was derived by the number of detected pixels on the borderline and the sum of the detection probability in the surveillance zone. The results of a 5-sensor and a 10-sensor were compared and analyzed.

Optimization of Piezoceramic Sensor/Actuator Placement for Vibration Control using Gradient Method (구배법을 이용한 진동제어용 압전 감지기/작동기의 위치 최적화)

  • 강영규;박현철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.684-688
    • /
    • 1998
  • Optimization of the collocated piezoceramic sensor/actuator placement is investigated numerically and verified experimentally for vibration control of laminated composite plates. The finite element method is used for the analysis of dynamic characteristics of the laminated composite plates with the piezoceramic sensor/actuator. The structural damping index(SDI) is defined from the modal damping. It is chosen as the objective function for optimization. Weights for each vibrational mode are taken into account in the SDI calculation. The gradient method is used for the optimization. Optimum location of the piezoceramic sensor/actuator is determined by maximizing tie SDI. Numerical simulation and experimental results show that the optimum location of the piezoceramic sensor/actuator is dependent upon the outer layer fiber orientations of the plate, and location and size of the piezoceramic sensor/actuator.

  • PDF

A Study On The Optimum Node Deployment In The Wireless Sensor Network System (무선센서 네트워크의 최적화 노드배치에 관한 연구)

  • Choi, Weon-Gab;Park, Hyung-Moo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.99-100
    • /
    • 2006
  • One of the fundamental problems in sensor networks is the deployment of sensor nodes. The Fuzzy C-Means(FCM) clustering algorithm is proposed to determine the optimum location and minimum number of sensor nodes for the specific application space. We performed a simulation using two dimensional L shape model. The actual length of the L shape model is about 100m each. We found the minimum number of 15 nodes are sufficient for the complete coverage of modeled area. We also found the optimum location of each nodes. The real deploy experiment using 15 sensor nodes shows the 95.7%. error free communication rate.

  • PDF

A Study On The Optimum Node Deployment In The Wireless Sensor Network System (무선 센서 네트워크의 최적화 노드배치에 관한 연구)

  • Choi, Weon-Gap;Park, Hyung-Moo
    • Journal of IKEEE
    • /
    • v.11 no.3
    • /
    • pp.100-107
    • /
    • 2007
  • One of the fundamental problems in wireless sensor networks is the efficient deployment of sensor nodes. The Fuzzy C-Means(FCM) clustering algorithm is proposed to determine the optimum location and minimum number of sensor nodes for the specific application space. We performed a simulation and a experiment using two rectangular and one L shape area. We found the minimum number of sensor nodes for the complete coverage of modeled area, and discovered the optimum location of each nodes. The real deploy experiment using sensor nodes shows the 94.6%, 92.2% and 95.7% error free communication rate respectively.

  • PDF

The Acoustic Vibration Properties for Chicken Eggs (계란의 음향진동 특성)

  • 최완규;조한근
    • Journal of Biosystems Engineering
    • /
    • v.27 no.4
    • /
    • pp.293-300
    • /
    • 2002
  • Surface crack detection is an important aspect in the quality control process of egg markets. The acoustic vibration of an egg could be used as a critical factor in evaluating the eggshell quality. The mode shape indicates the egg vibration behavior at different locations with respect to the input impulse and provides important information for the optimum sensor location to obtain the desired acoustic measurements. Theoretical analysis and experimental measurements were conducted to determine the acoustic vibration modes in eggs. The resonant fiequencies of the first and second resonance mode of intact eggs were found to be distributed between 2kHz and 7kHz range. The measured mode shapes of an egg were similar to theoretical shapes of homogeneous, elastic spheres. An elliptical deformation at the equator ring of the egg was observed. The frequency peak of this mode was dominantly present in the frequency spectrum of an intact egg impacted at its sharp position. The mode shapes related to the first resonant frequency of an egg shelved that the optimum location for the measuring sensor was the 180 degrees position. A optimum location for the egg support was found to be the 90 degrees position having the smallest vibration magnitude.

FLEXIBLE ARM POSITIONING USING $H_\infty$ CONTROL THEORY WITH OPTIMUM SENSOR LOCATION

  • Estiko, Rijanto;Nishigaya, Shinya;Moran, Antonio;Hayase, Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.461-466
    • /
    • 1994
  • This paper is concerned with the positioning control of a flexible arm system using H$_{\infty}$ control theory with optimum sensor location. Firstly, by virtue of the orthogonality of the flexible modes of the flexible arm a reduced order model of the tributed parameter system(DPS) representing the arm has formulated. The dynamical coupling between the flexible arm and DC motor has been considered to formulate an motor composite model. In order to achieve precise positioning with vibration attenuation, sensors have been optimally located. Finally, a robust H$_{\infty}$ controller was designed and the performance of the positioning system has been analyzed.d.

  • PDF

Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm

  • Amini, Amir;Mohammadimehr, Mehdi;Faraji, Alireza
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.721-733
    • /
    • 2020
  • The present study investigates the employing of piezoelectric patches in active control of a sandwich plate. Indeed, the active control and optimal patch distribution on this structure are presented together. A sandwich plate with honeycomb core and composite reinforced by carbon nanotubes in facesheet layers is considered so that the optimum position of actuator/sensor patches pair is guaranteed to suppress the vibration of sandwich structures. The sandwich panel consists of a search space which is a square of 200 × 200 mm with a numerous number of candidates for the optimum position. Also, different dimension of square and rectangular plates to obtain the optimal placement of piezoelectric actuator/senor patches pair is considered. Based on genetic algorithm and LQR, the optimum position of patches and fitness function is determined, respectively. The present study reveals that the efficiency and performance of LQR control is affected by the optimal placement of the actuator/sensor patches pair to a large extent. It is also shown that an intelligent selection of the parent, repeated genes filtering, and 80% crossover and 20% mutation would increase the convergence of the algorithm. It is noted that a fitness function is achieved by collection actuator/sensor patches pair cost functions in the same position (controllability). It is worth mentioning that the study of the optimal location of actuator/sensor patches pair is carried out for different boundary conditions of a sandwich plate such as simply supported and clamped boundary conditions.

Structural Stiffness Estimation and Optimum Sensor location for Structural Damage Detection (구조물의 손상 탐지를 위한 시스템 축소 및 주자유도 선정과 강성도 평가)

  • Lee Sook;Woo Kyeong-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.672-679
    • /
    • 2005
  • Damage detection is a very active research field, in which significant efforts have been invested in recent years. In this paper, analysis using structural stiffness estimation for damage detection is presented and compared to other methodologies. By using a cantilever analytical beam model, it is shown here that not only location but also the amount of damage in structure can be predicted from the ratio of change in stiffness. Damage detection experiment in real beam specimen on is also peformed and the results are compared.

  • PDF

Automatic Control of the Comnbine(I) -Automatic guidance control of the head-feed combine- (콤바인의 자동제어에 관한 연구(I) -자탈형(自脱型) 콤바인의 주행방향제어(走行方向制御)-)

  • Chung, Chang-Joo;Kim, Seong-Ok;Kim, Soo-Sung
    • Journal of Biosystems Engineering
    • /
    • v.13 no.2
    • /
    • pp.38-45
    • /
    • 1988
  • This study was intended to develop the system automatically controlling travel direction of combine by means of sensing paddy rows. The control system was composed of three detecting levers having different length, micro-switch, microcomputer and electro-hydraulic control system. Sensor and control system developed was tested to estimate optimum design values and its actual performance as installed in combine. The computer simulation and performance test at simulated and actual field were conducted to test for possibility of practical use. The results of the study arc summarized. as follows: 1. The travel traces of combine hiving the conventional sensor with 2 levers and the new sensor detecting the slope of paddy rows were compared through computer simulation. Turning frequency of combine having new sensor was fewer than that of conventional sensor, but the rate of turning for the combine with new sensor was much greater than that of conventional sensor. 2. As sensor was established behind the tip of divider, the sensor itself well followed paddy rows but the tip of divider did not, resulting in divider being deviated from paddy rows. It was analyzed that the sensor should be attached closer to the tip of divider to have a better performance of the control system. 3. The greater the length of sensor lever for given location of sensor attachment and combine forward speed, the higher sensitivity of turning in control system. Moreover, increasing combine speed resulted in a worse performance of control system following paddy rows. Consequently, it was necessary that an optimum length of sensor attachment and for the range of combine operational speed. 4. Field test of combine installed with the sensor and electro-hydraulic system developed in this study showed that it may be operated smoothly and well behaved to paddy rows to 4th gear of combine speed which was 59cm/s. Consequently. it was concluded that the combine with the guidance control system developed in this study may be successfully used for paddy combining.

  • PDF