• Title/Summary/Keyword: Optimum replacement time

Search Result 45, Processing Time 0.036 seconds

A Study on the Estimation of the Optimum Lifetime of Elevator Components for Elevator Accident Prevention (엘리베이터 사고예방을 위한 승강기 부품의 최적 수명 추정에 관한 연구)

  • Kim, Han-jin;Hwang, Min-soo;Choi, Og-man;Lee, An-ki;Kim, Jae-chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1278-1284
    • /
    • 2017
  • As of December 2016, there are 608,828 elevators in operation in Korea and 179,790 elevators in more than 15 years. 30.4% of all elevator are aging. Improved maintenance of the elevator and proactive replacement of the parts of the elevator can extend the lifetime of the elevator and ensure safety. An unclean environment reduces the lifetime of elevator parts. If you do not clean the environment and prevent preventive parts replacement, eventually shortening the lifetime of the parts connected to the failed part or causing more damage will result in greater economic loss. Also, the risk of elevator safety accidents due to failures of elevator parts will be increased accordingly. The study of optimum replacement time of elevator parts will contribute to prevention of safety accident of elevator and prolongation of lifetime of elevator through preventive replacement of elevator parts.

Determining the Optimum Maintenance Period of the Steel Making Equipment Having Multiple Failure Types (다수의 고장유형을 갖는 제철설비의 최적 정비주기 산출)

  • Song, Hong-Jun;Jun, Chi-Hyuck
    • IE interfaces
    • /
    • v.16 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • The maintenance cost in K Steelworks has been continuously increased in proportion to the production cost. However, there seems to be a possibility of reducing cost through the optimization of maintenance actions. The failure types of the equipment in steelworks ate various with different failure cost. Thus the failure rate and cost of each type of failures should be considered simultaneously when the optimum maintenance period is to be determined. It is considered that the equipment undergoes periodic replacement and a specified number of incomplete preventive maintenance actions are performed during a replacement period. Assuming that the time to failure follows a Weibull distribution, the parameters of the failure rate are estimated using the maximum likelihood estimation. The optimal replacement period is determined to minimize the average cost per unit time. As the result of analysis it is suggested that the existing maintenance period for a hot-rolling equipment can be extended significantly.

A Random Replacement Model with Minimal Repair

  • Lee, Ji-Yeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.1
    • /
    • pp.85-89
    • /
    • 1997
  • In this paper, we consider a random replacement model with minimal repair, which is a generalization of the random replacement model introduced Lee and Lee(1994). It is assumed that a system is minimally repaired when it fails and replaced only when the accumulated operating time of the system exceeds a threshold time by a supervisor who arrives at the system for inspection according to Poisson process. Assigning the corresponding cost to the system, we obtain the expected long-run average cost per unit time and find the optimum values of the threshold time and the supervisor's inspection rate which minimize the average cost.

  • PDF

Optimum Replacement Intervals Considering Salvage Values In Random Time Horizon (확률 시평에서 잔존가치를 고려한 최적의 교체 주기)

  • Park, Chung-Hyeon;Lee, Dong-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.170-176
    • /
    • 2001
  • An optimization problem to obtain the optimal replacement interval considering the salvage values is studied. The system is minimally repaired at failure and is replaced by new one at age T(periodic replacement policy with minimal repair of Barlow and Hunter〔2〕). Our model assumes that the time horizon associated with the number of replacements is random The total expected cost considering the salvage values with random time horizon is obtained and the optimal replacement interval minimizing the cost is found by numerical methods. Comparisons between non-considered salvage values and this case are made by a numerical example.

  • PDF

Determination of Optimal Time to Replace On-S Water Pipeline by Analyzing Water Main Failures and Economical Efficiency (수도사고 분석 및 경제성 평가를 통한 상수관로 최적 교체시기 결정)

  • Kim, Jong-Sin;Jung, Kwan-Sue;Bae, Chul-Ho;Lee, Doo-jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.279-285
    • /
    • 2009
  • In this study, applied to the industrial water service, it is verified feasibility of break-even analysis method which has not been introduced in Korea. The On-san water pipeline of 7.1km among the Ul-san industrial water service is selected and the optimal replacement time calculated by break-even analysis method is year 2033 to 2044 which will be 53 to 67 years since the pipes were buried. If indirect cost such as the value of lost water and traffic disruption, service interruption, etc. is calculated as 30 and 100% of the direct cost, the financially optimum replacement time is advanced 3 to 9 years. These ways present rational criteria to establish long-term plan for budget and to execute the limited budget efficiently.

A Spare Ordering Policy for Preventive Replacement with Repair (수리가능한 품목의 예방교체를 위한 주문정책)

  • Lim, Sung-Uk;Park, Young-Taek
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.4
    • /
    • pp.480-485
    • /
    • 2011
  • This paper presents a spare ordering policy for preventive replacement with minimal repair. To analyze the ordering policy, the failure process is modeled by a non-homogeneous Poisson process. Introducing the ordering, repair, downtime, replacement costs and salvage value, we derive the expected cost effectiveness as a criterion of optimality when the lifetime and lead times for the regular and expedited orders are generally distributed random variables. It is shown that, under certain conditions, there exists a finite and unique optimum ordering time which maximizes the expected cost effectiveness. A numerical example is also included to explain the proposed model.

Multivariate analysis of longitudinal surveys for population median

  • Priyanka, Kumari;Mittal, Richa
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.255-269
    • /
    • 2017
  • This article explores the analysis of longitudinal surveys in which same units are investigated on several occasions. Multivariate exponential ratio type estimator has been proposed for the estimation of the finite population median at the current occasion in two occasion longitudinal surveys. Information on several additional auxiliary variables, which are stable over time and readily available on both the occasions, has been utilized. Properties of the proposed multivariate estimator, including the optimum replacement strategy, are presented. The proposed multivariate estimator is compared with the sample median estimator when there is no matching from a previous occasion and with the exponential ratio type estimator in successive sampling when information is available on only one additional auxiliary variable. The merits of the proposed estimator are justified by empirical interpretations and validated by a simulation study with the help of some natural populations.

Optimal Replacement Scheduling of Water Pipelines

  • Ghobadi, Fatemeh;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.145-145
    • /
    • 2021
  • Water distribution networks (WDNs) are designed to satisfy water requirement of an urban community. One of the central issues in human history is providing sufficient quality and quantity of water through WDNs. A WDN consists of a great number of pipelines with different ages, lengths, materials, and sizes in varying degrees of deterioration. The available annual budget for rehabilitation of these infrastructures only covers part of the network; thus it is important to manage the limited budget in the most cost-effective manner. In this study, a novel pipe replacement scheduling approach is proposed in order to smooth the annual investment time series based on a life cycle cost assessment. The proposed approach is applied to a real WDN currently operating in South Korea. The proposed scheduling plan considers both the annual budget limitation and the optimum investment on pipes' useful life. A non-dominated sorting genetic algorithm is used to solve a multi-objective optimization problem. Three decision-making objectives, including the minimum imposed LCC of the network, the minimum standard deviation of annual cost, and the minimum average age of the network, are considered to find optimal pipe replacement planning over long-term time period. The results indicate that the proposed scheduling structure provides efficient and cost-effective rehabilitation management of water network with consistent annual budget.

  • PDF

Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag

  • Djelloul, Omar Kouider;Menadi, Belkacem;Wardeh, George;Kenai, Said
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.103-121
    • /
    • 2018
  • This paper reports the effects of coarse and fine recycled concrete aggregates (RCA) on fresh and hardened properties of self-compacting concrete (SCC) containing ground granulated blast-furnace slag (GGBFS) as cement replacement. For this purpose, three SCC mixes groups, were produced at a constant water to binder ratio of 0.38. Both fine and coarse recycled aggregates were used as natural aggregates (NA) replacement at different substitution levels of 0%, 25%, 50%, 75% and 100% by volume for each mix group. Each group, included 0, 15% or 30% GGBFS as Portland cement replacement by weight. The SCC properties investigated were self-compactability parameters (i.e., slump flow, T500 time, V-funnel flow time, L-box passing ability and sieve stability), compressive strength, capillary water absorption and water penetration depth. The results show that the combined use of RCA with GGBFS had a significant effect on fresh and hardened SCC mixes. The addition of both fine and coarse recycled aggregates as a substitution up to 50% of natural aggregates enhance the workability of SCC mixes, whereas the addition from 50 to 100% decreases the workability, whatever the slag content used as cement replacement. An enhancement of workability of SCC mixes with recycled aggregates was noticed as increasing GGBFS from 0 to 30%. RCA content of 25% to 50% as NA replacement and cement replacement of 15% GGBFS seems to be the optimum level to produce satisfactory SCC without any bleeding or segregation. Furthermore, the addition of slag to recycled concrete aggregates of SCC mixes reduces strength losses at the long term (56 and 90 days). However, a decrease in the capillary water absorption and water permeability depth was noticed, when using RCA mixes with slag.

Optimum Mix Proportion and Characteristics of the Combined Self Compacting Concrete according to Cement Types (시멘트 종류에 따른 병용계 자기충전 콘크리트의 최적배합비와 특성)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • This study is aimed to derive the optimum mix proportion of the combined self compacting concrete according to cement types (blast-furnace slag cement and belite cement) and to propose the basic data to field construction work after evaluating the quality properties. Specially, lime stone powder (LSP) as binder and viscosity agent are used in the combined self compacting concrete because slurry wall of an underground LNG storage tank should be kept stability of quality during concrete working. Replacement ratio of LSP is determined by confined water ratio test and main design factors including fine aggregate ratio ($S_r$), coarse aggregate ratio ($G_v$) and water-cement ratio (W/C) are selected. Also, quality properties including setting time, bleeding content, shortening depth and hydration heat on the optimum mix proportion of the combined self compacting concrete according to cement type are compared and analyzed. As test results, the optimum mix proportion of the combined self compacting concrete according to cement type is as followings. 1) Slag cement type-replacement ratio of LSP 13.5%, $S_r$ 47% and W/C 41%. 2) Belite cement type-replacement ratio of LSP 42.7%, Sr 43% and W/C 51%. But optimum coarse aggregate ratio is 53% regardless of cement types. Also, as test results regarding setting time, bleeding content, shortening depth and hydration heat of the combined self compacting concrete by cement type, belite cement type is most stable in the quality properties and is to apply the actual construction work.