• Title/Summary/Keyword: Oral pathogenic bacteria

Search Result 61, Processing Time 0.059 seconds

Antibacterial Activity and Anti-inflammatory Effect of Methanol Extracts of Saliva miltiorrhiza Against Oral Pathogenic Bacteria (단삼 메탄올 추출물의 구강 병원성 세균에 대한 항균 및 항염증효과)

  • Lee, JungHyeok;Yim, Dongsool;Choi, SungSook
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.1
    • /
    • pp.41-48
    • /
    • 2021
  • This research was conducted to investigate the antibacterial and anti-inflammatory effects of MeOH Ex. of Salvia miltiorrhiza (MESM) against oral pathogenic bacteria. Minimum inhibitory concentration (MIC), removal effect of biofilm produced by Streptococcus mutans, effect of gene expression of proinflammatory cytokines and effect of production of proinflammatory cytokine of MESM were tested. MESM showed moderated antibacterial activity against oral pathogenic bacteria. About 89±8% of biofilms produced by S. mutans were removed by MESM at a concentration of 1 mg/mL. Gene expression of IL-1β and TNF-α induced by Porphyromonas gingivalis were 8~9 folds reduced by MESM. Gene expression of IL-8 induced by Fusobacterium nucelatum were 12 folds reduced by MESM. Production of IL-1β, TNF-α and IL-8 were significantly suppressed by MESM. Conclusively, MESM showed potent antibacterial and anti-inflammatory effect against oral pathogenic bacteria.

Quantitative Analysis of Oral Pathogenic Bacteria according to Smoking Using Real-Time PCR

  • Jeon, Eun-Suk;Heo, Hyo-Jin;Ko, Hyo-Jin
    • Journal of dental hygiene science
    • /
    • v.18 no.1
    • /
    • pp.60-68
    • /
    • 2018
  • This study investigates the relationship between smoking and periodontal disease through quantitative analysis of intra-buccal oral pathogenic bacteria detected in smokers and aims to yield objective baseline data for applications in anti-smoking and dental health education programs. From April to May 2016, participants in an oral health management program within an intensive dental hygiene training course at Choonhae College of Health Sciences received an explanation of the study purposes and methods, after which male smokers aged 18~30 years agreed to participate voluntarily. Real-time polymerase chain reaction (PCR) analysis of oral pathogenic bacteria was performed after collecting gingival sulcus fluid samples from 67 smokers. The intra-buccal oral pathogenic bacteria distributions were analyzed based on the subjects' general characteristics, smoking behaviors, and oral care behaviors. The distribution results show that pathogens in the anterior teeth are affected (in this order) by age, toothbrush size, and smoking status; older people had fewer pathogens, those who used larger toothbrushes had more pathogens, and smokers had more pathogens, compared to non-smokers ($_{adj}R^2=19.1$). In the posterior teeth, pathogens were influenced (in this order) by smoking status, smoking duration, and the number of tooth brushings per day; smokers had more pathogens than non-smokers, and those who brushed their teeth more often had fewer pathogens ($_{adj}R^2=25.1$). The overall pathogen distribution was affected only by smoking status: smokers generally had more pathogens, compared to non-smokers. Therefore, it is necessary to provide information about the risk of periodontal disease due to smoking during anti-smoking or dental health education sessions; particularly, the use of smaller toothbrushes for anterior teeth and the need for smokers in their early twenties to quit smoking for dental health should be highly emphasized.

Effect of antibacterial effects of myrrh, rhatany, chamomomilla against to oral microorganisms (몰약, 라타니아, 카모밀레 등의 구강 내 병원균에 대한 항균작용)

  • Baek, Han-Seung;Kang, Soo-Kyung;Auh, Q-Schick;Chun, Yang-Hyun;Hong, Jung-Pyo
    • Journal of Oral Medicine and Pain
    • /
    • v.38 no.4
    • /
    • pp.299-312
    • /
    • 2013
  • Even though there exist a lot of study about antibacterial effects and reactions of extracted materials from plant, few study exist about oral pathogenic bacteria. Therefore we tried to recognize about the suppression effect to the periodontal pathogenic bacteria and halitosis, when add some kinds of plant extracted materials, myrrh, rhatany, chamomolilla to saliva. We used Crude drug : Myrrh tincture (100mg/ml), Ratanhia tincture (100mg/ml), Chamomile tincture(100mg/ml). We inspected about the cariogenic bateriae, S. mutans GS5 and S. sobrinus 6715, periodontal pathogenic bacteria, P. gingivalis 2561, P. intermedia ATCC 25611, Candida albicans ATCC 18804, and E. feacalis ATCC 4083, then the result follow. The plant extracted material, myrrh, rhatany, chamomomilla, which have convergence effect, bacteriocidal effect and anti-inflammation effect, show an antibacterial effect and reaction to the oral pathogenic bacteria. And with treating rhatany that have the most strong antibacterial effect, through transmission electron microscopy we could see a severe morphologic change of bacteria. This means with the plant extracted material, we can suppress the oral harmful bacteria and prevent periodontal diseases, caries, halitosis and oral inflammations. And within the future studies for the improvement of oral hygiene, our result might be a clinical evidence.

Antimicrobial Activity of Korean Propolis Extracts on Oral Pathogenic Microorganisms

  • Roh, Jiyeon;Kim, Ki-Rim
    • Journal of dental hygiene science
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 2018
  • Propolis has been used as a natural remedy in folk medicine worldwide. The antibacterial, antiviral, antifungal, and antiprotozoal aspects of its antimicrobial properties have been widely investigated. However, few studies focused on its applications in dentistry. Many dental diseases are related to various microorganisms in the oral cavity. In this study, we assessed the antimicrobial activity of Korean propolis extract, collected from 6 different regions, on oral pathogenic microorganisms. The propolis samples, collected from 6 different regions (P1: Uijeongbu, P2: Ansan, P3: Hongcheon, P4: Iksan, P5: Gwangju, and P6: Sangju), were dissolved in ethanol at two different concentrations (10 and 50 mg/ml). Three oral bacteria (Streptococcus mutans, Staphylococcus aureus, and Enterococcus faecalis) and one fungus (Candida albicans) were activated in general broth for 24 hours. Microorganisms were diluted and spread onto agar plates, onto which sterilized 6 mm filter papers with or without each propolis sample were placed. After 24 hours of incubation, clear zones of inhibition were observed. All tests were performed in triplicate. The propolis samples showed significant antibacterial and antifungal activity on oral pathogenic microorganisms; in addition, low-concentration groups showed outstanding antimicrobial efficacy on the 4 different microorganisms. Among the samples, P6 had significantly higher antibacterial activity than that of the others against three different bacteria. In particular, a high concentration of P6 showed a significant antifungal effect. In conclusion, we confirmed that Korean propolis has an inhibitory effect on oral pathogenic bacteria and fungi. Therefore, we suggest the possibility of developing oral medicine and oral care products based on Korean propolis.

Analysis of oral pathogenic microorganisms in Alzheimer's dementia patients using nursing facilities (요양보호시설 이용중인 알츠하이머 치매환자의 구강 병원성 미생물 분석)

  • Jung, Seo-Yun;Jeong, Mi-Ae;Kim, Chun-Sung;Kim, Su-Gwan
    • Journal of Korean society of Dental Hygiene
    • /
    • v.22 no.5
    • /
    • pp.411-416
    • /
    • 2022
  • Objectives: This study aimed to identify pathogenic microorganisms in the oral cavity of Alzheimer's dementia patients and recognize the necessity and importance of oral prevention management. Methods: The participants comprised 40 dementia patients aged 60 years or older and general patients who were using nursing care facilities in Gwangju from February to July 2017. Samples were collected with Eazyperio products for oral pathogenic microbial testing. Eighteen types of bacteria could be detected by analyzing Multiplex-Quantity Real Time polymerase chain reaction at a genetic testing agency. Results: The study comprised more women than men. Most participants were in their 80s. Statistically significant differences were observed in some oral pathogenic microorganisms. Conclusions: Pathogenic microorganisms could more easily proliferate in the oral cavities of Alzheimer's dementia patients than they could among general elderly participants due to a lack of awareness of oral hygiene and prevention management. To improve this, it is considered necessary to deploy oral health care professionals.

New Approaches to the Control of Pathogenic Oral Bacteria (바이오필름을 생성하는 병원성 구강 세균을 제어하는 새로운 접근법)

  • Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.100-108
    • /
    • 2021
  • In the oral cavity, there are hundreds of microbial species that exist as planktonic cells or are incorporated into biofilms. The accumulation and proliferation of pathogenic bacteria in the oral biofilm can lead to caries and periodontitis, which are typical oral diseases. The oral bacteria in the biofilm not only can resist environmental stress inside the oral cavity, but also have a 1,000 times higher resistance to antibiotics than planktonic cells by genes exchange through the interaction between cells in the oral biofilm. Therefore, if the formation of oral biofilm is suppressed or removed, oral diseases caused by bacterial infection can be more effectively prevented or treated. In particular, since oral biofilms have the characteristic of forming a biofilm by gathering several bacteria, quorum sensing, a signaling system between cells, can be a target for controlling the oral biofilm. In addition, a method of inhibiting biofilm formation by using arginine, an alkali-producing substrate of oral bacteria, is used to convert the distribution of oral microorganisms into an environment similar to that of healthy teeth or inhibit the secretion of glucosyltransferase by S. mutans to inhibit the formation of non-soluble glucans. It can be a target to control oral biofilm. This method of inhibiting or removing the oral biofilm formation rather than inducing the death of pathogenic bacteria in the oral cavity will be a new strategy that can selectively prevent or therapeutic avenues for oral diseases including dental caries.

Effect of Various Agents on Oral Bacterial Phagocytosis in THP-1 Cells

  • Song, Yuri;Lee, Hyun Ah;Na, Hee Sam;Jin, Chung
    • International Journal of Oral Biology
    • /
    • v.43 no.4
    • /
    • pp.217-222
    • /
    • 2018
  • Phagocytosis is a fundamental process in which phagocytes capture and ingest foreign particles including pathogenic bacteria. Several oral pathogens have anti-phagocytic strategies, which allow them to escape from and survive in phagocytes. Impaired bacteria phagocytosis increases inflammation and contributes to inflammatory diseases. The purpose of this study is to investigate the influences of various agents on oral pathogenic phagocytosis. To determine phagocytosis, Streptococcus mutans, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis were stained with 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester (CFSE), and was measured using flowcytometery and confocal microscopy. The influencing factors on phagocytosis were evaluated through the pretreatment of ROS inhibitor (N-acetyl-L-cysteine (NAC)), lysozyme, potassium chloride (KCI) and adenosine triphosphate (ATP) in THP-1 cells. Expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). The phagocytosis of various bacteria increased in a MOI-dependent manner. Among the tested bacteria, phagocytosis of P. gingivalis showed the highest fluorescent intensity at same infection time. Among the tested inhibitors, the NAC treatment significantly inhibited phagocytosis in all tested bacteria. In addition, NAC treatment indicated a similar pattern under the confocal microscopy. Moreover, NAC treatment significantly increased the bacteria-induced secretion of $IL-1{\beta}$ among the tested inhibitors. Taken together, we conclude that the phagocytosis occurs differently depending on each bacterium. Down-regulation by ROS production inhibited phagocytosis and lead increased of oral pathogens-associated inflammation.

Trends in the rapid detection of infective oral diseases

  • Ran-Yi Jin;Han-gyoul Cho;Seung-Ho Ohk
    • International Journal of Oral Biology
    • /
    • v.48 no.2
    • /
    • pp.9-18
    • /
    • 2023
  • The rapid detection of bacteria in the oral cavity, its species identification, and bacterial count determination are important to diagnose oral diseases caused by pathogenic bacteria. The existing clinical microbial diagnosis methods are time-consuming as they involve observing patients' samples under a microscope or culturing and confirming bacteria using polymerase chain reaction (PCR) kits, making the process complex. Therefore, it is required to analyze the development status of substances and systems that can rapidly detect and analyze pathogenic microorganisms in the oral cavity. With research advancements, a close relationship between oral and systemic diseases has been identified, making it crucial to identify the changes in the oral cavity bacterial composition. Additionally, an early and accurate diagnosis is essential for better prognosis in periodontal disease. However, most periodontal disease-causing pathogens are anaerobic bacteria, which are difficult to identify using conventional bacterial culture methods. Further, the existing PCR method takes a long time to detect and involves complicated stages. Therefore, to address these challenges, the concept of point-of-care (PoC) has emerged, leading to the study and implementation of various chair-side test methods. This study aims to investigate the different PoC diagnostic methods introduced thus far for identifying pathogenic microorganisms in the oral cavity. These are classified into three categories: 1) microbiological tests, 2) microchemical tests, and 3) genetic tests. The microbiological tests are used to determine the presence or absence of representative causative bacteria of periodontal diseases, such as A. actinomycetemcomitans, P. gingivalis, P. intermedia, and T. denticola. However, the quantitative analysis remains impossible, and detecting pathogens other than the specific ones is challenging. The microchemical tests determine the activity of inflammation or disease by measuring the levels of biomarkers present in the oral cavity. Although this diagnostic method is based on increase in the specific biomarkers proportional to inflammation or disease progression in the oral cavity, its commercialization is limited due to low sensitivity and specificity. The genetic tests are based on the concept that differences in disease vulnerability and treatment response are caused by the patient's DNA predisposition. Specifically, the IL-1 gene is used in such tests. PoC diagnostic methods developed to date serve as supplementary diagnostic methods and tools for patient education, in addition to existing diagnostic methods, although they have limitations in diagnosing oral diseases alone. Research on various PoC test methods that can analyze and manage the oral cavity bacterial composition is expected to become more active, aligning with the shift from treatment-oriented to prevention-oriented approaches in healthcare.

Inhibitory Effect of Pentose on Biofilm Formation by Oral Bacteria

  • Lee, Young-Jong;Baek, Dong-Heon
    • International Journal of Oral Biology
    • /
    • v.35 no.4
    • /
    • pp.203-207
    • /
    • 2010
  • A number of bacterial species coexist in oral cavities as a biofilm rather than a planktonic arrangement. By forming an oral biofilm with quorum sensing properties, microorganisms can develop a higher pathogenic potential and stronger resistance to the host immune system and antibiotics. Hence, the inhibition of biofilm formation has become a major research issue for the future prevention and treatment of oral diseases. In this study, we investigated the effects of pentose on biofilm formation and phenotypic changes using wild type oral bacteria obtained from healthy human saliva. D-ribose and D-arabinose were found to inhibit biofilm formation, but have no effects on the growth of each oral bacterium tested. Pentoses may thus be good candidate biofilm inhibitors without growth-inhibition activity and be employed for the future prevention or treatment of oral diseases.

Antibacterial Effect on Oral Pathogenic Bacteria of Phytoncide from Chamaecyparis Obtusa (구강병원균에 대한 편백 피톤치드의 항균작용)

  • Kang, Soo-Kyung;Shin, Mi-Kyoung;Auh, Q-Schick;Chun, Yang-Hyun;Hong, Jung-Pyo
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.1
    • /
    • pp.45-55
    • /
    • 2007
  • Plant extract has attracted considerable interest in oral disease therapy. The present study was performed to observe the antibacterial effect on cariogenic Streptococcus mutans GS5 and Streptococcus sobrinus 6715, and periodontopathic Actinobacillus actinomycetemcomitans Y4 of phytoncide from Chamaecyparis obtusa Sieb. et Zucc employing the measurement of optical density, viable cell counts, and antibiotic sensitivity. The results were as follows: 1. Minimum inhibitory concentration of the phytoncide for S. mutans, S. sobrinus, and A. actinomycetemcomitans was observed to be 0.5%, 1%, and 0.2%, respectively. 2. Minimum bactericidal concentration of the phytoncide for S. mutans, S. sobrinus, and A. actinomycetemcomitans was determined to be 0.5%, 2%, and 0.2%, respectively. 3. The bacteria exposed to the phytoncide become more sensitive to antibiotics. The phytoncide enhanced significantly antibacterial activity of ampicillin against S. mutans and S. sobrinus. It also increased significantly the activity of penicillin and amoxicillin against S. sobrinus. In contrast, the phytoncide augmented the activity of amoxicillin and cefotaxime against A. actinomycetemcomitans but the increase was not statistically significant. The overall results indicate that phytoncide from Chamaecyparis obtusa Sieb. et Zucc used for this study has a strong antibacterial activity against cariogenic and periodontopathic bacteria and that it also has permeabilizing effect on certain antibiotics against these bacteria. Therefore, the phytoncide may be used as a candidate for prevention and therapeutic agent against oral infectious disease including dental caries and periodontal disease.