• Title/Summary/Keyword: Organic Source profile

Search Result 37, Processing Time 0.023 seconds

Estimation of Quantitative Source Contribution of VOCs in Seoul Area (서울지역에서의 VOCs 오염원 기여도 추정에 관한 연구)

  • 봉춘근;윤중섭;황인조;김창녕;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.387-396
    • /
    • 2003
  • A field study was conducted during the summer time of 2002 to determine compositions of volatile organic compounds (VOCs) emitted from vehicles and to develop source emission profiles that is applied to CMB model to estimate the source contribution of certain area. Source emission profile is widely used for the estimation of source contribution by the chemical mass balance model and have to be developed applicable for the target area of estimation. This study was aimed to develop source emission profile and estimation of source contribution of VOCs after application of the chemical mass balance (CMB) receptor model. After considering the emission inventory and other research results for the VOCs in Seoul, Korea, the sources like vehicle emission (tunnel), gas station (gasoline, diesel), solvent usage (painting operation, dry cleaning, graphic art), and gas fuels were selected for the major VOCs sources. Furthermore, ambient air samples were simultaneously collected from 09:00 to 11:00 for four days at eight different official air quality monitoring sites as receptors in Seoul during summer of 2001. Source samples were collected by canisters, and then about seventy volatile organic compounds were analyzed by gas chromatography with flame ionization detector (GC/FID). Based on both the developed source profiles and the database of the receptors, CMB model was intensively applied to estimate mass contribution of VOCs sources. Examining the source profile from the vehicle, the portion of alkanes of VOCs was highest, and then the portion of aromatics such toluene, m/p-xylene were followed. In case of gas fuel. they have their own components; the content of butane, propane, ethane was higher than any other component according to the fuel usage. The average of the source apportionment on VOCs for 8 sites showed that the major sources were vehicle emission and gas fuels. The vehicle emission source was revealed as having the highest contribution with an average of 49.6%, and followed by solvent with 21.3%, gas fuel with 16.1%, gasoline with 13.1%.

Development of the vac Source Profile using Collinearity Test in the Yeosu Petrochemical Complex (여수석유화학산단의 공선성 시험을 이용한 VOC 오염원 분류표 개발)

  • Jeon Jun-Min;Hur Dang;Hwang In Jo;Kim Dong-Sul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.315-327
    • /
    • 2005
  • The total of 35 target VOCs (volatile organic compounds), which were included in the TO-14, was selected to develop a VOCs' source profile matrix of the Yeosu Petrochemical Complex and to test its collinearity by singular value decomposition(SVD) technique. The VOCs collected in canisters were sampled from 12 different sources such as 8 direct emission sources (refinery, painting, wastewater treatment plant, incinerator, petrochemical processing, oil storage, fertilizer plant, and iron mill) and 4 general area sources (gasoline vapor emission, graphic art activity, vehicle emission, and asphalt paving activity) in this study area, and then those samples were analyzed by GC/MS. Initially the resulting raw data for each profile were scaled and normalized through several data treatment steps, and then specific VOCs showing major weight fractions were intensively reviewed and compared by introducing many other related studies. Next, all of the source profiles were tested in terms of degree of collinearity by SVD technique. The study finally could provide a proper VOCs' source profile in the study area, which can give opportunities to apply various receptor models properly including chemical mass balance (CMB).

Determination of Cholesterol, Fatty Acids and Polyaromatic Hydrocarbons in PM10 Particles Collected from Meat Charbroiling (고기구이 스모크에서 채취한 PM10입자에서 콜레스테롤, 지방산과 PAH의 분포)

  • Seo, Young-Hwa;Ko, Kwang-Youn;Jang, Young-Kee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.155-164
    • /
    • 2010
  • Emission from biomass combustion such as meat charbroiling is an important source of organic aerosol. Since source profiles are necessary input profiles for source apportionment of aerosol by a chemical mass balance model, meat cooking organic source profiles are developed by measuring organic marker compounds, including palmitic acid, stearic acid, oleic acid and cholesterol as well as PAH compounds. Emissions from meat and pork charbroiling are collected on quartz filters with a PM10-high volume sampler, extracted with organic solvents, derivatized with diazomethane/TMS and analyzed by GC/MS isotope dilution method. Organic and elemental carbon are also analyzed by an OCEC analyzer. Wt.% of cholesterol to the organic carbon(OC) content from beef and pork charbroiling is only 0.056 and 0.062, but wt. % of all saturated fatty acids to the OC content from beef and pork charbroiling is 2.727 and 2.022, and the wt% of all unsaturated fatty acids to the OC content is 0.278 and 0.438, respectively. Content of total PAH compounds to the OC content from beef charbroiling is higher than that from pork charbroiling, and those are 0.116 wt% and 0.044 wt%. Among PAH compounds benzo(a)pyrene as a single compound is account for 0.0071 wt% and 0.0023 wt% of OC content from beef and pork charbroiling. Ratios of marker compound to cholesterol are calculated, and those values are in good agreement with the values already reported at the food cooking emission, indicating that they can be used as organic source profiles for the apportionment of organic aerosol.

Three Dimensional Direct Monte Carlo Simulation on OLED Evaporation Process (유기EL 증착 공정에 대한 3차원 Monte Carlo 해석)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.37-42
    • /
    • 2009
  • The performance of an OLED(organic luminescent emitting device) fabrication system strongly depends on the design of the evaporation cell-source. Trends in display sizes have hauled the enlargement of mother glass substrates. The enlargement of substrates requires the improvement and the enlargement of the effusion cell-source for OLED evaporation process. The deposited layers should be as uniform as possible, and therefore it is important to know the effusion profile of the molecules emitted from the cell-source. Conventional 2D DSMC algorithm cannot be used for simulating the new concept cell-source design, such as a linear source. This work concerns the development of 3D DSMC (direct simulation Monte Carlo) analysis for simulating the behavior of the evaporation cell-sources. In this paper, the 3D DSMC algorithm was developed and the film thickness profiles were obtained by the numerical analysis.

  • PDF

Sustenance and Enhancement of Soil Fertility for Organic Farming by Legumes and Green Manure (두과.녹비작물 재배를 통한 유기농법 토양비옥도의 유지와 증진)

  • 장경란;손상목
    • Korean Journal of Organic Agriculture
    • /
    • v.8 no.2
    • /
    • pp.97-110
    • /
    • 2000
  • An organic agriculture should be managed by mixed farming in farm unit as a closed recycling system. Due to restricted purchased of fertilizers from outside, organic farmer has to deal with limited amount of nutrient source in farm unit. Especially the supply of the essential nutrient, nitrogen, mostly depends on legumes fixing nitrogen optimizing the site-adapted crop rotation. Dynamics of humus and metabolic plant carbon and active soil carbon compartment in active and passive humuspool by rotation system was explained, and dynamics of potentially mineralizable nitrogen in organic nitrogen and biomass was discussed. It was also discussed comparison of ammonia emission, potential greenhouse effect, primary energy input, acidification potential, CO2 emission between organic and conventional farming, the nitrate-nitrogen dynamic in the soil profile by organic, integrated and conventional farming system. In conclusion, it was suggested for Korean Organic Agriculture that the importance of legumes and green manures in rotation system for increase/maintenance of soil ferfility, and was pointed out the need of investment for environment impact of Korean organic farming implement.

  • PDF

Simulation of Molecular Flows Inside a Guide Block in the OLED Deposition Process (OLED 박막 증착공정에서 유도로 내부의 분자유동 해석)

  • Sung, Jae-Yong;Lee, Eung-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.45-50
    • /
    • 2008
  • Molecular flows inside a guide block in the OLED(organic luminescent emitting device) deposition process have been simulated using DSMC(direct simulation Monte Carlo) method. Because the organic materials are evaporated under vacuum, molecules flow at a high Knudsen number of the free molecular regime, where the continuum mechanics is not valid. A guide block is designed as a part of the linear cell source to transport the evaporated materials to a deposition chamber, When solving the flows, the inlet boundary condition is proved to affect significantly the whole flow pattern. Thus, it is proposed that the pressure should be specified at the inlet. From the analysis of the density distributions at the nozzle exit of the guide block, it is shown that the longer nozzle can emit molecules more straightly. Finally, a nondimensionalized mass flow profile is obtained by numerical experiments, where various nozzle widths and inlet pressures are tested.

Shadow Modeling using Z-map Algorithm for Process Simulation of OLED Evaporation

  • Lee, Eung-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.487-490
    • /
    • 2004
  • In order to simulate OLED evaporation process, modeling of directional distribution of the vaporized organic materials, film thickness distribution profile and pattern-mask shadow effect are required In accordance with many literatures; all of them except shadow effect modeling are studied and developed. In this paper, modeling algorithm of evaporation shadow is presented for process simulation of full-color OLED evaporating system. In OLED evaporating process the offset position of the point cell-source against the substrate rotation axis and the usage of the patterned mask are the principal causes for evaporation shadow. For geometric simulation of shadow using z-map, the film thickness profile, which is condensed on a glass substrate, is converted to the z-map data. In practical evaporation process, the glass substrate is rotated. This physical fact is solved and modeled mathematically for z-map simulation. After simulating the evaporation process, the z-map data can present the shadow-effected film thickness profile. Z-map is an efficient method in that the cross-sectional presentations of the film thickness profile and thickness distribution evaluation are easily and rapidly achieved.

  • PDF

A Study on the Source Profile of Volatile Organic Compounds from Major Emission Sources (휘발성 유기화합물의 주요 배출원의 배출물질 구성비에 관한 연구-오존 생성 전구물질을 중심으로-)

  • 김소영;한진석;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.3
    • /
    • pp.233-240
    • /
    • 2001
  • The composition of volatile organic compounds (VOCs) was anlyzed for major emission sources such as vehicle exhaust, gasoline and diesel vapor, organic solvent vapor, and butane fuel gas. Low carbon-numbered hydrocarbons were found to be the dominant components of gasoline vehicle exhaust. In gasoline evaporative vapor, the predominant constituents were found to be butane and iso-pentane regardless of ambient air temperature. In case of diesel evaporative vapor was similar to those of gasoline evaporative vapor. The composition of organic solvent vapor from painting, ink and petroleum consisted mostly or aromatic compounds such as toluene and m, p, o-xylene. The hydrocarbon fraction of butane fuel gas. which is used by portable bunner, consisted mainly of propane (34%) and butane(70%).

  • PDF

Estimation of Reliability of Real-time Control Parameters for Animal Wastewater Treatment Process and Establishment of an Index for Supplemental Carbon Source Addition (가축분뇨처리공정의 자동제어 인자 신뢰성 평가 및 적정 외부탄소원 공급량 지표 확립)

  • Pak, JaeIn;Ra, Jae In-
    • Journal of Animal Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.561-572
    • /
    • 2008
  • Responses of real-time control parameters, such as ORP, DO and pH, to the conditions of biological animal wastewater treatment process were examined to evaluate the stability of real-time control using each parameter. Also an optimum index for supplemental carbon source addition based on NOx-N level was determined under a consideration of denitrification rate by endogenous respiration of microorganism and residual organic matter in liquor. Experiment was performed with lab-scale sequencing batch reactor(SBR) and working volume of the process was 45L. The distinctive nitrogen break point(NBP) on ORP-and DO-time profiles, which mean the termination of nitrification, started disappearing with the maintenance of low NH4-N loading rate. Also the NBP on ORP-and DO-time profiles was no longer observed when high NOx-N was loaded into the reactor, and the sensitivity of ORP became dull with the increase of NOx-N level. However, the distinctive NBP was constantly occurred on pH(mV)-time profile, maintaining unique profile patterns. This stable occurrence of NBP on pH(mV)-time profile was lasted even at very high NOx-N:NH4-N ratio(over 80:1) in reactor, and the specific point could be easily detected by tracking moving slope change(MSC) of the curve. Revelation of NBP on pH(mV)-time profile and recognition of the realtime control point using MSC were stable at a condition of over 300mg/L NOx-N level in reactor. The occurrence of distinctive NBP was persistent on pH(mV)-time profile even at a level of 10,000mg/L STOC(soluble total organic carbon) and the recognition of NBP was feasible by tracing MSC, but that point on ORP and DO-time profiles began to disappear with the increase of STOC level in reactor. The denitrfication rate by endogenous respiration and residual organic matter was about 0.4mg/L.hr., and it was found that 0.83 would be accepted as an index for supplemental carbon source addition when 0.1 of safety factor was applied.

Effect of Hexafluoroisopropanol Addition on Dry Etching of Cu Thin Films Using Organic Material (유기 물질을 사용한 구리박막의 건식 식각에 대한 헥사플루오로이소프로판올 첨가의 영향)

  • Park, Sung Yong;Lim, Eun Teak;Cha, Moon Hwan;Lee, Ji Soo;Chung, Chee Won
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.162-171
    • /
    • 2021
  • Dry etching of copper thin films is performed using high density plasma of ethylenediamine (EDA)/hexafluoroisopropanol (HFIP)/Ar gas mixture. The etch rates, etch selectivities and etch profiles of the copper thin films are improved by adding HFIP to EDA/Ar gas. As the EDA/HFIP concentration in EDA/HFIP/Ar increases, the etch rate of copper thin films decreases, whereas the etch profile is improved. In the EDA/HFIP/Ar gas mixture, the optimal ratio of EDA to HFIP is investigated. In addition, the etch parameters including ICP source power, dc-bias voltage, process pressure are varied to examine the etch characteristics. Optical emission spectroscopy results show that among all species, [CH], [CN] and [H] are the main species in the EDA/HFIP/Ar plasma. The X-ray photoelectron spectroscopy results indicate the formation of CuCN compound and C-N-H-containing polymers during the etching process, leading to a good etch profile. Finally, anisotropic etch profiles of the copper thin films patterned with 150 nm scale are obtained in EDA/HFIP/Ar gas mixture.