• Title/Summary/Keyword: Organogenesis

Search Result 212, Processing Time 0.027 seconds

Growth Responses of Petunia as Affected by Several Pollutants in Vitro (Petunia 조직배양시 몇가지 공해물질이 생장반응에 미치는 영향)

  • 백기엽;최성렬;이재욱;최주견
    • Journal of Plant Biology
    • /
    • v.27 no.3
    • /
    • pp.139-147
    • /
    • 1984
  • This in vitro study was employed to clarify the effects of several pollutants i.e. $SO_2$, fluoride, cadmium(Cd), aluminum(Al) and NaCl, on the organogenesis and growth responses of shoot-tip, stem and multiple-buds segments derived from hypocotyl or cotyledon culture of petunia seedlings. ${Na_2}{SO_3}$levels of more than 200$\mu{g}$/ml had significantly reduced organogenesis, growth, and chlorophyll content. The injuries caused by ${Na_2}{SO_3}$, concentration of more than 400$\mu{g}$/ml were alleviated by increasing hydrogenion concentration of medium, indicating some relationship between two factors. Organogenesis was not affected by the fluoride concentration up to 100ppm in the media, but the growth and chlorophyll content were greatly reduced by the fluoride. The effect of Cd depended on the explant sources used for the culture; 1.0ppm was effective for fresh weight increase in shoot tip culture, and 3.0ppm in stem segments culture. Organogenesis and growth were greatly reduced by more than 10.0 Cd treatment. Growth and formation of shoots were better with Na conc. of 0.3% compared to control, but those of roots were inhibited. Na concentration goes over 1.0%, organogenesis and subsequent growth were inhibited, and chlorophyll synthesis was drastically reduced. Chlorophyll content was increased on the medium supplemented with Al 50$\mu{g}$/ml compared to control. However the formation and growth of shoots were greatly inhibited with more than 400$\mu{g}$/ml and roots were not produced at all.

  • PDF

Plant Regeneration through Organogenesis from Callus of Camptotheca acuminata Decaisne (희수나무 캘러스로부터 기관분화에 의한 식물체 재분화)

  • Bae, Dae-Ho;Park, Whoa-Shig;Hwang, Sung-Jin;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.3
    • /
    • pp.192-197
    • /
    • 2009
  • Camptotheca acuminata, a native of South China is a well known natural source of monoterpene-indole alkaloid camptothecin(CPT), one of the most promising anti-tumoural compounds. This study was conducted to optimize plant growth regulators and culture conditions on plantlets regeneration through organogenesis from callus of Camptotheca acuminta. Callus were induced from various explants of in vitro germinated plantlets of C. acuminta using WPM medium containing 0.2 ㎎/L 2,4-D. Hypocotyl segments were exhibited higher embryogenic callus than the other explants. Shoot buds formation from embryogenic callus was affected by plant growth regulators, pre-treated dark condition and liquid culture. Organogenesis was optimal in WPM liquid medium containing 0.5 ㎎/L BA. The dark pre-treatment for 2 weeks before the solid culture was effective for organogenesis. The regenerated shoots were rooted in WPM medium with 0.2 ㎎/L NAA and successfully acclimated in green-house conditions.

Direct Multipropagation through Organogenesis from Nodal Explants of Anoectochilus formosanus Hayata

  • Rha, Eui-Shik;Kim, Hyun-Soon;Yoo, Nam-Hee
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.22-25
    • /
    • 1998
  • To establish direct multipropagation through organogenesis from nodal explants of Anoectochilus formosanus Hayata, the nodes were cultured on LS medium containing various concentrations of 6-benzyladenine(BA). High plant regeneration and adventitious bud formation were obtained from supplemented with 4.0mg/l of BA. Plant height was promoted by adding 0.3% activated charcoal. Plantlet regeneration capacity from nodes was depended on nodal parts on the stem, upper position was the best comparing with intermediate and lower.

  • PDF

Plant Regeneration Via Organogenesis on Petiole of Centella asiatica (L.) Urban

  • Choi, Kyung-Mi;Hwang, Sung-Jin;Chung, Sang-Jin;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.2
    • /
    • pp.87-91
    • /
    • 2006
  • An efficient plant regeneration of C. asiatica was achieved from organogenesis using petiole explants of in vitro plantlet on MS basal medium controled with different plant growth regulators (NAA,2,4-D, IAA kinetin, and BA). Best results that 50%, efficiency of regeneration per explant for regeneration were obtained with IAA $17.13\;{\mu}M$ and BA $8.9\;{\mu}M$. Formation of adventitious shoots via organogenesis from the petiole explant was verified by histological sectioning of plantlets. Regenerated plants were transplanted into soil.

Rapid Propagation of Pelagonium Inquinans Via Organogenesis from Mature Leaf Explants

  • Hwang, Sung-Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.2
    • /
    • pp.92-95
    • /
    • 2006
  • A method for plant regeneration via organogenesis from Pelagonium inquinans leaf disc has been developed. Mature leaf explants were collected from field-grown plants and used for the induction of adventitious shoot regeneration on Murashige and Skoog (MS) medium supplemented with 3% (w/v) sucrose plus plant growth regulators. Maximum shoot organogenesis, with $11.8{\pm}1.5$ shoots (98.6%) per leaf disc, was obtained with $2\;mg/l$ $N^6-benzyladenine$ (BA) and $0.5\;mg/l$ ${\alpha}-naphthyleneacetic$ acid (NAA) in 30 days. For rooting, the in vitro proliferated and elongated shoots were excised into 1.5-2 cm in length microcutting, which were plated individually on an half-strength MS (1/2MS) medium supplemented with 2% (w/v) sucrose plus various concentrations of indole-3-butyric acid (IBA). Shoots rooted with a frequency of 100% following culture on 1/2MS medium containing $0.5\;mg/l$ IBA.

Organogenesis from Callus Derived from In Vitro Root Tissues of Wild Prunus yedoensis Matsumura

  • Cheong, Eun Ju
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.1
    • /
    • pp.41-46
    • /
    • 2019
  • In vitro organogenesis system of the valuable ornamental species, Prunus yedoensis which is native to Korea, was established through callus culture derived from root tissues. Callus were induced on the medium supplemented with 2,4-D and BA or NAA and kinetin. Organogenesis was differ from the callus type, and NAA and kinetin combination was effective to induce organogenic callus. Growth of callus was influenced by sucrose concentrations. High level of sucrose (over 5%) had adverse effects such as decreased fresh weight and increased mortality of callus. Shoots developed from the callus when $GA_3$ was treated with BA in the medium. Results showed that $GA_3$ is essential for shoot development and elongation from callus in this species.

Expression of Organogenesis-related Genes and Analysis of Genetic Stability by ISSR Markers of Regenerants Derived from the Process of in vitro Organogenesis in Japanese Blood Grass (Imperata cylindrica 'Rubra') (기내배양 홍띠 단계별 재분화체의 기관분화 관련 유전자 발현과 ISSR에 기반한 유전적 안정성 분석)

  • Ye-Jin Lee;In-Jin Kang;Chang-Hyu Bae
    • Korean Journal of Plant Resources
    • /
    • v.36 no.5
    • /
    • pp.496-507
    • /
    • 2023
  • The in vitro organogenesis is one of important issues in plant embryology, and somaclonal variations are existing in calli and/or regenerants induced from a process of the organogenesis with in vitro circumstances. In this study, expressions of organogenesis-related genes were evaluated and genetic stability of regenerants derived from the process of in vitro organogenesis were measured using ISSR markers in Imperata cylindrica 'Rubra', Poaceae. The expressions of organogenesis-related genes were detected all of regenerants at the process of the organogenesis. All ISSR markers produced with an average of 71 bands per in vitro-cultured regenerants, and the scorable bands were varied from two to eight with an average of 5.14 bands per a primer. The polymorphism rates of the in vitro regenerants were higher than that of mother plants (1.4%), showing 4.1% (pot-cultured regenerants), 4.3% (field-cultured regenerants), 4.2% (in vitro-cultured regenerants), 5.6% (calli with green shoots) and 1.4% (calli), respectively. The genetic similarity matrix (GSM) among all accessions ranged from 0.747 to 1.0 with a mean of 0.868. GSM of the regenerants showed differences (from 0.972 to 1.00) compared with that of mother plants (0.991). According to the clustering analysis, two independent groups were divided into; the one is mother plants and regenerants cultured at room and open field, the other is regenerants cultured in vitro. The results give a new insight for understanding the dynamics of organogenesis in monocot plant.

Shoot Organogenesis and Plantlet Regeneration from Stem Explants of Cleome rosea Vahl (Capparaceae)

  • Claudia Simoes;Alessandra S. Santos;Norma Albarello;Solange Faria Lua Figueiredo
    • Journal of Plant Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.199-204
    • /
    • 2004
  • The medicinal value of the genus Cleome justifies bio-technological studies of Cleome rosea, a Brazilian annual species from sandy coastal ecosystems (restinga), which have been submitted to an intense process of antropogenic degradation. In the present work, was analyzed the influence of cytokinins, 6-benzyladenine (BA) and 6-furfurylaminopurine (kinetin) added to the Murashige and Skoog medium (MS), on the proliferation capacity of explants from the stem axis (hypocotyl, node and internode) for a period of five monthly subcultures (150 days). Regardless of the explant sources, plantlet regeneration by direct and indirect organogenesis was observed. The largest number of shoots proliferated through direct organogenesis was obtained on medium with 4.4 $\mu{M}$ BA. Also, the highest proliferation capacity through indirect organogenesis was found on medium with 4.4 $\mu{M}$ BA + 4.6 $\mu{M}$ kinetin. The presence of kinetin alone was not effective for multiplication of the species. Elongation and rooting were obtained when shoots were transferred onto growth regulator-free medium, and acclimatization rates from 70% to 81% were achieved depending on explant sources used. Plants were then successfully established in soil and showed normal phenotypes.

Highly efficient production of transgenic Scoparia dulcis L. mediated by Agrobacterium tumefaciens: plant regeneration via shoot organogenesis

  • Aileni, Mahender;Abbagani, Sadanandam;Zhang, Peng
    • Plant Biotechnology Reports
    • /
    • v.5 no.2
    • /
    • pp.147-156
    • /
    • 2011
  • Efficient Agrobacterium-mediated genetic transformation of Scoparia dulcis L. was developed using Agrobacterium tumefaciens strain LBA4404 harboring the binary vector pCAMBIA1301 with ${\beta}$-glucuronidase (GUS) (uidA) and hygromycin phosphotransferase (hpt) genes. Two-day precultured leaf segments of in vitro shoot culture were found to be suitable for cocultivation with the Agrobacterium strain, and acetosyringone was able to promote the transformation process. After selection on shoot organogenesis medium with appropriate concentrations of hygromycin and carbenicillin, adventitious shoots were developed on elongation medium by twice subculturing under the same selection scheme. The elongated hygromycin-resistant shoots were subsequently rooted on the MS medium supplemented with $1mg\;l^{-1}$ indole-3-butyric acid and $15mg\;l^{-1}$ hygromycin. Successful transformation was confirmed by PCR analysis using uidA- and hpt-specific primers and monitored by histochemical assay for ${\beta}$-GUS activity during shoot organogenesis. Integration of hpt gene into the genome of transgenic plants was also verified by Southern blot analysis. High transformation efficiency at a rate of 54.6% with an average of $3.9{\pm}0.39$ transgenic plantlets per explant was achieved in the present transformation system. It took only 2-3 months from seed germination to positive transformants transplanted to soil. Therefore, an efficient and fast genetic transformation system was developed for S. dulcis using an Agrobacterium-mediated approach and plant regeneration via shoot organogenesis, which provides a useful platform for future genetic engineering studies in this medicinally important plant.

Correlative Effect of Adenine Sulphate and Benzylaminopurine on the Regeneration Potentialily in Cotyledonary Explants of Groundnut (Arachis hypogaea L.)

  • Palanivel, S.;Jayabalan, N.
    • Journal of Plant Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.21-24
    • /
    • 2000
  • An efficient method of shoot regeneration of peanut is described. In vitro shoot organogenesis from the callus of cotyledon explants of Arachis hypogaea L. was stimulated by addition of Adenine sulphate (Ads) along with 6 - benzylaminopurine (BAP) and - napthalene acetic acid (NAA). Ads (13 ${\mu}{\textrm}{m}$) had a stimulatory effect on shoot bud differentiation when combined with BAP (13 ${\mu}{\textrm}{m}$) and NAA (2 ${\mu}{\textrm}{m}$). Shoot organogenesis was markedly higher (92%) from callus induced on Ads, BAP and NAA combined media than from those formed by the individual supplementation of Ads or BAP with NAA. The shoots elongated on the media with GA$_3$ (1 ${\mu}{\textrm}{m}$). Elongated plantlets rooted with MS media containing IBA (9 ${\mu}{\textrm}{m}$).

  • PDF