• Title/Summary/Keyword: Orthoimage

Search Result 83, Processing Time 0.024 seconds

Updating Building Layer of Digital Map Using Airborne Digital Camera Image (디지털항공영상을 이용한 수치지도의 건물레이어 갱신)

  • Hwang, Won-Soon;Kim, Kam-Rae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.31-39
    • /
    • 2007
  • As the availability of images from airborne digital camera with high resolution is expanded, a lot of concern are shown about the production of orthoimage and digital map. This study presents the method of updating digital map using orthoimage from airborne digital camera image. Images were georectified using GPS surveying data. For the generation of orthoimage, Lidar DEM was used. The absolute positional accuracy of orthoimage was evaluated using GPS surveying data. And that of the building layer of digital map was estimated using the existed digital map at the scale of 1:1,000. The absolute positional accuracy of orthoimage was as followed: RMSE in X and Y were ${\pm}0.076m$ and ${\pm}0.294m$. The RMSE of the building layer were ${\pm}0.250m$ and ${\pm}0.210m$ in X and Y directions, respectively. The RMSE of the digital map using orthoimage from Aerial Digital Camera image fell within allowable error range established by NGII. Consequently, updating digital map using orthoimage from Aerial Digital Camera image can be applied to various fields including the construction of the framework data and the GIS of local government.

  • PDF

Patch-Based Processing and Occlusion Area Recovery for True Orthoimage Generation (정밀정사영상 생성을 위한 패치기반 처리와 폐색지역 복원)

  • Yoo, Eun-Jin;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.83-92
    • /
    • 2010
  • Emergence of high-resolution digital aerial cameras and airborne laser scanners have made innovative progress in photogrammetry and spatial information technology. The purpose of this study is to generate true orthoimage by recovering occlusion areas. The orthoimages were generated patch-based transformation. The occlusion areas were mutually corrected by using multiple aerial images. This study proposed a novel method of building roof based orthoimage generation and an effective method of occlusion area detection and recovery. The proposed methods could be efficient to generate true orthoimages in urban areas where occlusion areas are problematic.

True Orthoimage Generation Using Multiple Aerial Images (다중 항공영상을 이용한 엄밀정사영상 생성)

  • Yoo, Eun-Jin;Lee, Dong-Cheon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.225-226
    • /
    • 2010
  • The problem in orthoimage generation is to recover occlusion areas. In this study, occlusion areas - double mapping regions of the building roofs - were mutually corrected by using multiple images. The proposed method could be efficient for generating true orthoimages in urban areas.

  • PDF

Estimating Accuracy of 3-D Models of SPOT Imagery Based on Changes of Number of GCPs (SPOT영상을 사용한 3차원 모델링시 지상기준점수에 따른 정확도 평가)

  • 김감래;안병구;김명배
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.1
    • /
    • pp.61-69
    • /
    • 2003
  • There is various kinds cause that influence to created DEM and orthoimage using stereo satellite images. Specialty, research about effect that GCP number gives to accuracy of DEM, orthoimage and modeling may have to be gone ahead. Therefore, this research increases GCP number by 5 to 30 and created each modeling, DEM and orthoimage using SPOT panchromatic images that resolution is 10m by digital image processing method. Accuracy assessment did by orthoimage using 20 check point. As a result, GCP number between 10∼30 modeling RMSE is 1 pixel low appear. Horizontal·vertical error that use orthoimage looked tendency that decrease GCP number increases, and confirmed by the most economical in GCP number 10∼15. Also, analyze correlation of GCP number and orthoimage position accuracy and presented improvement plan and research task hereafter.

Quality Evaluation of Orthoimage and DSM Based on Fixed-Wing UAV Corresponding to Overlap and GCPs (중복도와 지상기준점에 따른 고정익 UAV 기반 정사영상 및 DSM의 품질 평가)

  • Yoo, Yong Ho;Choi, Jae Wan;Choi, Seok Keun;Jung, Sung Heuk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.3-9
    • /
    • 2016
  • UAV(unmanned aerial vehicle) can quickly produce orthoimage with high-spatial resolution and DSM(digital surface model) at low cost. However, vertical and horizontal positioning accuracy of orthoimage and DSM, which are obtained by UAV, are influenced by image processing techniques, quality of aerial photo, the number and position of GCPs(ground control points) and overlap in flight plan. In this study, effects of overlap and the number of GCPs are analyzed in orthoimage and DSM. Positioning accuracy are estimated based on RMSE(root mean square error) by using dataset of nine pairs. In the experiments, Overlaps and the number of GCPs have influence on horizontal and vertical accuracy of orthoimage and DSM.

Comparison and Analysis of Features between Aerial Photo Image and Satellite Image (항공사진 영상과 위성 영상간의 지형지물 비교.분석)

  • 김감래;김재연
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Practical use is increasing on the aerial ortho image recently, and much researches for geographic information system build that use high resolution satellite image cause this are progressing. Also many researches that use KOMPSAT-1 satellite image of resolution 6.6m are performing in these days, estimation for between aerial photo and satellite image is needed. In this treatise scanned image of aerial photo, using aerial photo resampling image of resolution equal with KOMPSAT-1 image using aerial photo, and KOMPSAT-1 satellite image use for experimental image making each orthoimage, classified feature for estimate. We evaluated to what level that an separation item could be able to estimate in each orthoimage. As result of estimation analysis, In the classified feature in aerial photo orthoimage with aerial photo resampling image orthoimage is about 61%, KOMPSAT-1 satellite image orthoimage is almost 41% could estimated. Through this investigation estimate, KOMPSAT-1 satellite sue to map updating, geographic information og non-approach area and environment inspect.

Application of CCD Image by Direct Georeferencing (Direct Georeferencing에 의한 CCD 영상의 적용기법)

  • Song Youn Kyung;Park Woon Yong;Park Hong Gi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.1
    • /
    • pp.77-88
    • /
    • 2005
  • Direct Georeferencing (DG) is based on the direct measurement of the projection centers and rotation angle of sensor through loading the GPS and INS in aircraft. The methods can offer us to acquire the exterior orientation parameters with only minimum GCPs, even the ground control process could be completely skipped. In this study, a CCD camera is simultaneously used in GPS/INS, and acquired CCD image through Direct Georeferencing produce digital orthoimage. In this process, methods of combining sensor and digital orthoimage are examined and estimated. For the comparison of the positioning accuracy digital orthoimage through Direct Georeferencing, GCPs determined by GPS surveying are used. Two digital orthoimage are produced; one with a few GCP and the other without them. The produced maps can be used to correct or revised 1:1,000 or 1:5,000 scale maps accordingly.

A Study on Direct Georeferencing by Combined Multi-sensor (다중센서 결합에 의한 외부표정요소 직접결정기법에 관한 연구)

  • Song, Youn-Kyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.1
    • /
    • pp.88-95
    • /
    • 2005
  • Direct Georeferencing by combined multi-sensor based on the direct measurement of the projection centers and rotation angle of sensor through loading the GPS and INS in aircraft. The method of combined multi-sensor can offer us to acquire the exterior orientation parameters with only minimum GCPs, even the ground control process could be completely skipped. Consequently, It is possible extreme to reduce the time and expense for the mapping process. In this study, a CCD camera is simultaneously used in combined multi-sensor surveying, and acquired CCD image through Direct Georeferencing produce digital orthoimage. In this process, methods of combining sensor and digital orthoimage are examined and estimated. For the comparison of the positioning accuracy digital orthoimage through Direct Georeferencing, GCPs determined by GPS surveying are used. Two digital orthoimage are produced; one with a few GCP and the other without them. The accuracy of orthoimages produced through combined multi-sensor with GCPs meets that of 1:1,000 maps. Without GCPs, it meets that of 1:5,000 maps.

  • PDF

Generation of Digital Orthoimage using ADS40 Images (ADS40영상에 의한 수치정사영상 생성)

  • Lee, Jun-Hyuk;Lee, Young-Jin
    • Spatial Information Research
    • /
    • v.16 no.3
    • /
    • pp.317-330
    • /
    • 2008
  • In this paper, the acquisition of digital imagery and the orthoimage generation were performed to set up working process. And another purpose of this thesis is to evaluate the accuracy of orthoimage by overlapping digital topographic map and digital cadastral map on it. The digital topographic map and digital cadastral map were superimposed on the orthoimage to check the accuracy as another approach of evaluation. The RMSE is ${\pm}0.364m$ in X direction and ${\pm}0.413m$ in Y direction with digital topographical maps(1/5,000). And the RMSE is ${\pm}1.283m$ in X direction and ${\pm}1.085m$ in Y direction with digital cadastral map. It is necessary for the application of a newly developed digital aerial camera to make an exact synchronization between GPS/IMU data and image data, use a technology for setting a standard image resolution and the number of ground control points.

  • PDF

Rapid 3D Mapping Using LIDAR System (LIDAR 시스템을 이용한 근 실시간 3D 매핑)

  • Sohn, Hong-Gyoo;Yun, Kong-Hyun;Kim, Kee-Tae;Kim, Gi-Hong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.4 s.15
    • /
    • pp.55-61
    • /
    • 2004
  • Rapid developments in sensor technologies now allow the generation of multi-source topographical data. For many applications, however, the geospatial information provided by individual sensors is not complete, precise, and consistent. To solve these inherent problems, additional diverse sources of complementary data can be used and fused. In this paper, the experiment was done for generation of 3D orthoimage data using LIDAR data and digital camera image. And the results show that 3D orthoimage can be used for the flood monitoring.