• 제목/요약/키워드: Oscillating Cylinder

검색결과 101건 처리시간 0.037초

Numerical simulation of flow past a rotating and rotary oscillating circular cylinder on unstructured meshes

  • Bai, Wei
    • Coupled systems mechanics
    • /
    • 제2권2호
    • /
    • pp.191-214
    • /
    • 2013
  • The unsteady flow past a circular cylinder which starts rotating or rotary oscillating impulsively from rest in a viscous fluid is investigated for Reynolds numbers Re=200 and 1000, rectilinear speed ratios ${\alpha}$ between 0.5 and 5.0, and forced oscillating frequencies $f_s$ between 0.1 and 2.0. Numerical solutions of the Navier-Stokes equations are obtained by using a finite volume method on an unstructured colocated grid. The objective of the study is to examine the effect of the rotating and rotary oscillating circular cylinder on the flow patterns and dynamics loads. The numerical results reveal that the $K\acute{a}rm\acute{a}n$ vortex street vanishes entirely behind the rotating cylinder when the ratio ${\alpha}$ exceeds the critical value, and the vortex shedding behind the rotary oscillating cylinder undergoes mainly three modes named 'synchronization', 'competition' and 'natural shedding' with the increase of $f_s$. Based on the amplitude spectra analysis of the lift coefficients, the regions of the classification of flow structure modes are presented, which provide important references for the flow control in the ocean engineering.

Application of Immersed Boundary Method for Flow Over Stationary and Oscillating Cylinders

  • Lee Dae-Sung;Ha Man-Yeong;Kim Sung-Jin;Yoon Hyun-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.849-863
    • /
    • 2006
  • IBM (Immersed Boundary Method) with feedback momentum forcing was applied to stationary and moving bodies. The capability of IBM to treat the obstacle surfaces, especially with moving effect has been tested for two dimensional problems. Stationary and oscillating cylinders were simulated by using IBM based on finite volume method with Cartesian coordinates. For oscillating cylinder, lateral and vertical motions are considered, respectively. Present results such as time histories of drag and lift coefficients for both stationary and oscillating cases are in good agreement with previous numerical and experimental results. Also, the instantaneous wake patterns of oscillating cylinder with different oscillating frequency ratios well represented those of previous researches. More feasibility study for IBM has been carried out to two oscillating cylinders. Drag and lift coefficients are presented for two cylinders oscillating sinusoidally with phase difference of $180^{\circ}$.

회전 진동하는 원형실린더 주위 유동의 폐쇄효과 연구 (BLOCKAGE EFFECT ON FLOWS AROUND A ROTATIONALLY OSCILLATING CIRCULAR CYLINDER)

  • 강승희;권오준
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.33-38
    • /
    • 2008
  • For study on the unsteady blockage effect, flows around a rotationally oscillating circular cylinder with relatively low forcing frequency in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The computed results of the oscillating cylinder in the test section showed that the fluctuations of lift and drag are augmented by the blockage effects. The drag further increases because of low base pressure. The pressure on the test section wall shows the harmonics having the oscillating and the shedding frequencies contained in the blockage effect.

Navier-Stokes 식을 이용한 회전 진동하는 2차원 원형 실린더 주위 유동 해석 (NUMERICAL ANALYSIS OF THE FLOW AROUND A ROTARY OSCILLATING CIRCULAR CYLINDER USING UNSTEADY TWO DIMENSIONAL NAVIER-STOKES EQUATION)

  • 이명국;김재수
    • 한국전산유체공학회지
    • /
    • 제16권3호
    • /
    • pp.8-14
    • /
    • 2011
  • Although the geometry of circular cylinder is simple, the flow is complicate because of the flow separation and vortex shedding. In spite of many numerical and experimental researches, the flow around a circular cylinder has not been clarified even now. It has been known that the unsteady vortex shedding from a circular cylinder can vibrate and damage a structure. Lock-on phenomenon is very important in the flow around an oscillating circular cylinder. The lock-on phenomenon is that when the oscillation frequency of the circular cylinder is at or near the frequency of vortex shedding from a stationary cylinder, the vortex shedding synchronizes with the cylinder motion. This phenomenon can be recognized by the spectral analysis of the lift coefficient history. At the lock-on region the vortex is shedding by the modulated frequency to the body frequency. However, the vortex is shedding by the mixed frequencies of natural shedding and forced body frequency in the region of non-lock-on. In this paper, it was analyzed the relation between the frequency of rotary oscillating circular cylinder and the vortex shedding frequency.

가상경계법을 사용한 횡단 진동하는 실린더 주위의 유동 해석 (Immersed Boundary Method for Flow Induced by Transverse Oscillation of a Circular Cylinder in a Free-Stream)

  • 김정후;윤현식;;전호환
    • 대한조선학회논문집
    • /
    • 제43권3호
    • /
    • pp.322-330
    • /
    • 2006
  • Numerical calculations are carried out for flow past a circular cylinder forced oscillating normal to the free-stream flow at a fixed Reynolds number equal to 185. The cylinder oscillation frequency ranged from 0.8 to 1.2 of the natural vortex-shedding frequency, and the oscillation amplitude extended up to 20% of the cylinder diameter. IBM (Immersed Boundary Method) with direct momentum forcing was adopted to handle both of a stationary and an oscillating cylinder Present results such as time histories of drag and lift coefficients for both stationary and oscillating cases are in good agreement with previous numerical and experimental results. The instantaneous wake patterns of oscillating cylinder with different oscillating frequency ratios showed the synchronized wakes pattern in the lock-in region and vortex switching phenomenon at higher frequency ratio than the critical frequency ratio.

Numerical analysis of oscillating square cylinder with corner radius

  • Tong, J.F.;Sohn, C.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.316-320
    • /
    • 2008
  • In this paper, the near wake of stationary and transversely oscillating square section cylinders with different corner radii are studied by numerical method to investigate the influence of corner radius. Six models R/D=0,0.1,0.2,0.3,0.4,0.5 (R is the corner radius and D is the characteristic dimension of the body) were studied. It was found that the corner radius of square cylinder significantly influences the flow features around the body both in stationary and oscillating conditions. Results indicate that, as R/D ratio increases, the Strouhal number increases and the separation point decrease for the stationary and oscillating cases.

  • PDF

Numerical analysis of oscillating square cylinder with corner radius

  • Tong, J.F.;Sohn, C.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.316-320
    • /
    • 2008
  • In this paper, the near wake of stationary and transversely oscillating square section cylinders with different corner radii are studied by numerical method to investigate the influence of corner radius. Six models R/D=0,0.1,0.2,0.3,0.4,0.5 (R is the corner radius and D is the characteristic dimension of the body) were studied. It was found that the corner radius of square cylinder significantly influences the flow features around the body both in stationary and oscillating conditions. Results indicate that, as R/D ratio increases, the Strouhal number increases and the separation point decrease for the stationary and oscillating cases.

  • PDF

재생기를 가진 실린더내의 왕복유동에 관한 열전달 (Heat Transfer of Oscillating Flow in a Cylinder with Regenerator)

  • 김진호;이재헌;강병하
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1758-1769
    • /
    • 1995
  • The heat transfer of oscillating flow in a cylinder with regenerator was investigated by the moving boundary technique. The flow in regenerator was modeled by means of Brinkman Forchheimer-Extended-Darcy equation . Results showed that when piston moved toward right, velocity vectors near cylinder wall at left piston and right side of regenerator inclined to symmetric axis and velocity vectors near cylinder wall at right piston and left side of regenerator inclined to cylinder wall. And the time averaged Nusselt number was increased by 46.73% when the oscillatory frequency became twice and decreased by 31.46% when the oscillatory frequency became half. The time averaged Nusselt number was increased by 18.09% when thickness of the regenerator became twice and decreased by 7.53% when thickness of the regenerator became half. But mesh size of regenerator hardly affected the Nusselt number. And efficiency of regenerator was larger as the oscillatory frequency was smaller, thickness and mesh size of regenerator was larger.

진동하는 구를 지 나는 유동의 특성 (Characteristics of Flow p ast an Oscillating Sphere)

  • 이대성;윤현식;하만영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.284-287
    • /
    • 2008
  • Flow over a sphere under forced oscillation at Re=300 is simulated for various frequency ratios which are defined as excitation frequency over natural frequency of stationary sphere. The results of oscillating sphere are compared with those of stationary sphere and an oscillating cylinder. Detailed vortical structures, hydrodynamic forces and frequencies of the wake are prescribed as a function of frequency ratio. For oscillating sphere, planar symmetry of the wake is kept and two nearly symmetric hair pin vortices are induced by oscillation for one period of oscillation when the frequency ratio is bigger than 0.5. Modulation phenomenon which can be found in an oscillating cylinder were not seen for an oscillating sphere.

  • PDF

3D Dynamics of the Oscillating-Moving Load Acting in the Interior of the Hollow Cylinder Surrounded with Elastic Medium

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Structural Engineering and Mechanics
    • /
    • 제71권6호
    • /
    • pp.713-738
    • /
    • 2019
  • In the paper the dynamics of the oscillating moving load acting in the interior of the hollow cylinder surrounded with elastic medium is studied within the scope of the exact field equations of 3D elastodynamics. It is assumed that the oscillating load act on the certain arc of the internal circle of the cylinder's cross section and this load moves with constant velocity along the cylinder's axis. The corresponding 3D dynamic problem is solved by employing moving coordinate system, the exponential Fourier transform and the presentation these transforms with the Fourier series. The expressions of the transforms are determined analytically, however their originals are found numerically. Under the investigations carried out in the paper the main attention is focused on the so-called "gyroscopic effect", according to which, the influence of the vibration frequency on the values of the critical velocity and interface stresses are determined. Numerical results illustrated this effect are presented and discussed. In particular, it is established how the non-axisymmetricity of the problem acts on the influence of the load oscillation on its critical velocity and on the interface stresses.