• Title/Summary/Keyword: Over-current relay

Search Result 91, Processing Time 0.03 seconds

Modified-Current-Differential Relay for Transformer Protection

  • Kang Yong-Cheol;Jin En-Shu;Won Sung-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.1-8
    • /
    • 2005
  • During magnetic inrush or over-excitation, saturation of the core in a transformer draws a significant exciting current, which can cause malfunction of a current-differential relay. This paper proposes a modified-current-differential relay for transformer protection. The relay calculates the core-loss current from the induced voltage and the core-loss resistance as well as the magnetizing current from the core flux and the magnetization curve. Finally, the relay obtains the modified differential current by subtracting the core-loss and the magnetizing currents from the conventional differential current. A comparative study of the conventional differential relay with harmonic blocking is presented. The proposed relay not only discriminates magnetic inrush and over-excitation from an internal fault, but also improves the relay speed.

Modified Current Differential Relay for Transformer Protection Unaffected by Remanent flux (잔류자속에 무관한 변압기 보호용 수정전류차동 계전기)

  • 강용철;김은숙
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.9
    • /
    • pp.500-506
    • /
    • 2004
  • This paper proposes a modified current differential relay for transformer protection unaffected by the remanent flux. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. To cope with the remanent flux, before saturation, the relay calculates the core-loss current and uses it to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the actual core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation because the exciting current was successfully compensated. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. The relay discriminates magnetic inrush and over-excitation from an internal fault and is not affected by the level of remanent flux.

Autonomous Adaptive Digital Over Current Relay (계통변화를 고려한 자율 적응형 과전류 계전기)

  • 윤준석;최면송;이승재;현승호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.8
    • /
    • pp.444-449
    • /
    • 2003
  • In this paper present Autonomous Adaptive Digital Over Current Relay for distribution networks which acts autonomous setting using the short circuit impedance measured by relay of power systems. Automation of relay setting is one of the basic requirements for distribution automation, although manual relay setting is used at present. The short circuit impedance from a power source in distribution networks essential for the Autonomous Relay Setting changes frequently in distribution networks. In this paper the short circuit impedance is calculated with voltage and current measured in real time operation of digital relay using the Recursive Least Squares. A new method of digital relay setting is introduced using the the short circuit impedance and load current.

A Modified Current Differential Relay for Transformer Protection (변압기 보호용 수정 전류차동 계전방식)

  • 강용철;김은수;원성호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.80-86
    • /
    • 2004
  • During magnetic inrush or over-excitation, saturation of the core in a transformer draws a large exciting current, which can cause mal-operation of a differential relay. This paper proposes a modified current differential relay for transformer protection. The relay calculates core-loss current from the induced voltage and the core-loss resistance; the relay calculates the magnetizing current from the core flux and the magnetization curve. Finally, the relay obtains the modified differential current by subtracting the core-loss and the magnetizing currents from the conventional differential current. Comparison study with the conventional differential relay with harmonic blocking is also shown. The proposed technique not only discriminates magnetic inrush and over-excitation from an internal fault, but also improves the speed of the conventional relay.

Modified Current Differential Relay for Y-$\Delta$ Transformer Protection (Y-$\Delta$ 변압기 보호용 수정 전류차동 계전기)

  • Kang, Yong-Cheol;Jin, En-Shu;Lee, Byung-Eun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.9-13
    • /
    • 2004
  • This paper proposes a modified current differential relay for Y-$\Delta$ transformer protection. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. A method to estimate the circulating component of the delta winding current is proposed. To cope with the remanent flux, before saturation, the core-loss current is calculated and used to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Test results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation because the exciting current was successfully compensated. The relay correctly discriminates magnetic inrush and over-excitation from an internal fault and is not affected by the level of remanent flux.

  • PDF

A Study on the Correction of Protection Relay of Temporary Electric Power Installations for Storage Tank (저장 탱크용 임시전력설비의 보호계전기 정정에 관한 연구)

  • Son, Seok-Geum
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.562-567
    • /
    • 2020
  • In this paper, this is a study on the correction of protection relays to monitor temporary power facilities for storage tanks especially transformers to block and protect faults such as insulation breakdown. When an abnormality such as a short circuit or a ground fault occurs in the power system, it is important to detect this quickly cut off the device and equipment in which the fault occurred and separate it from the power system to correct the protection relay so that it does not interfere with power supply. In addition the fault current calculation that accurately applies the fault type and the cause of the fault for protection cooperation will be the most important factor in the correction of the protection relay. For protection coordination a study was conducted on the method of coordination for protection of power facility protection for storage tanks such as over current relay, ground over current relay, under voltage relay, and ground over voltage relay applied to temporary.

Ground fault protective relaying schemes for DC traction power supply system (비접지 DC 급전계통에서 전류형 지락보호계전 방법)

  • 정상기;정락교;이성혁;김연수;조홍식
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.412-417
    • /
    • 2004
  • In urban rail transit systems, ground faults in the DC traction power supply system are currently detected by the potential relay, 64P. Though it detects the fault it cannot identify the faulted region and therefore the faulted region could not be isolated properly. Therefore it could cause a power loss of the trains running on the healthy regions and the safety of the passengers in the trains could be affected adversely. Two new ground fault protective relay schemes that can identify the faulted region are presented in this paper. A current limiting device, called Device X, is newly introduced in both system, which enables large amount of ground fault current flow upon the positive line to ground fault. One type of the relaying schemes is called directional and differential ground fault protective relay which uses the current differential scheme in detecting the fault and uses the permissive signal from neighboring substation to identify the faulted region correctly. The other is called ground over current protective relay. It is similar to the ordinary over current relay but it measures the ground current at the device X not at the power feeding line, and it compares the current variation value to the ground current in Device X to identify the correct faulted line. Though both type of the relays have pros and cons and can identify the faulted region correctly, the ground over current protective relaying scheme has more advantages than the other.

A Study on the Over Current Relay Misoperation in Power System with Distributed Generations (분산전원 연계 계통에서의 과전류계전기 오동작에 관한 연구)

  • Park, Jong-Il;Lee, Kyebyung;Park, Chang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1705-1710
    • /
    • 2018
  • This paper deals with an analysis of the causes of over current relay(OCR) misoperation in power system with distributed generations(DG). In general, Y-D and Y-Y-D transformer connections are used for grid interconnection of DG. According to the interconnection guideline, the neutral point on Y side should be grounded. However, these transformer connections can lead to OCR misoperation as well as over current ground relay(OCGR) misoperation. Several researches have addressed the OCGR misoperation due to the interaction between transformer connections and zero-sequence voltage of distribution system. Recently, a misoperation of OCR at the point of DG interconnection to the utility system has been also reported. With increasing the interconnections of DG, such OCR as well as OCGR misoperations are expected to increase. In this paper, PSCAD/EMTDC modeling including DG interconnection transformer was performed and various case studies was carried out for identifying the cause of OCR misoperation.

Estimation of Delta Winding Current and Its Application to a Compensated-Current-Differential Relay for a Y-Δ Transformer

  • Kang, Yong-Cheol;Lee, Byung-Eun;Jin, En-Shu
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.255-263
    • /
    • 2010
  • The compensated-current-differential relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. Delta winding current is necessary to obtain the modified differential current for a $Y-\Delta$ transformer. This paper describes an estimation algorithm of the delta winding current and its application to a compensated-current-differential relay for a $Y-\Delta$ transformer. Prior to saturation, the core-loss current is calculated and used to modify the differential current. When the core first enters saturation, the initial value of the core flux is obtained by inserting the modified differential current into the magnetization curve. This flux value is used to derive the magnetizing current and consequently the modified differential current. The operating performance of the proposed relay was compared against a conventional current differential relay with harmonic blocking. Test results indicate that the proposed relay remained stable during severe magnetic inrush and over-excitation, and its operating time is significantly faster than a conventional relay. The relay is unaffected by the level of remanent flux and does not require an additional restraining or blocking signal to maintain stability. This paper concludes by implementing the proposed algorithm into a prototype relay based on a digital signal processor.

Modified Current Differential Relay for $Y-{\Delta}$ Transformer Protection ($Y-{\Delta}$ 변압기 보호용 수정 전류차동 계전기)

  • Jin, En-Shu;Kang, Yong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.3
    • /
    • pp.95-101
    • /
    • 2006
  • This paper proposes a modified current differential relay for $Y-{\Delta}$ transformer protection. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. A method to estimate the circulating component of the delta winding current is proposed. To cope with the remanent flux, before saturation, the core-loss current is calculated and used to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Test results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation, because the exciting current was successfully compensated. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. The relay does not require additional restraining signal and thus cause time delay of the relay.