• Title/Summary/Keyword: Owl feather

Search Result 6, Processing Time 0.021 seconds

The Effect of Scaling of Owl's Flight Feather on Aerodynamic Noise at Inter-coach Space of High Speed Trains based on Biomimetic Analogy

  • Han, Jae-Hyun;Kim, Tae-Min;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • v.4 no.4
    • /
    • pp.109-115
    • /
    • 2011
  • An analysis and design method for reducing aerodynamic noise in high-speed trains based on biomimetics of noiseless flight of owl is proposed. Five factors related to the morphology of the flight feather have been selected, and the candidate optimal shape of the flight feather is determined. The turbulent flow field analysis demonstrates that the optimal shape leads to diminished vortex formation by causing separation of the flow as well as allowing the fluid to climb up along the surface of the flight feather. To determine the effect of scaling of the owl's flight feather on the noise reduction, a two-fold and a four-fold scaled up model of the feather are constructed, and the numerical simulations are carried out to obtain the aerodynamic noise levels for each scale. Original model is found to reduce the noise level by 10 dBA, while two-fold increase in length dimensions reduces the noise by 12 dBA. Validation of numerical solution using wind tunnel experimental measurements is presented as well.

  • PDF

The Effect of Scaling of Owl's Flight Feather on Aerodynamic Noise at Inter-coach Space of High Speed Trains based on Biomimetic Analogy (생체모방공학을 이용한 고속철도 차간 공간에 적용한 부엉이 깃 형상 크기에 따른 공력소음 저감 연구)

  • HAn, Jae-Hyun;Kim, Tae-Min;Kim, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.606-611
    • /
    • 2012
  • An analysis and design method for reducing aerodynamic noise in high-speed trains based on biomimetics of noiseless flight of owl is proposed. Wind tunnel testing and numerical CFD (Computational Fluid Dynamics) simulation for the basic inter-coach spacing model are carried out, and their results compared. To determine the effect of scaling of the owl's flight feather on the noise reduction, two-fold and a four-fold scaled up model of the feather are constructed, and the numerical simulations are carried out to obtain the aerodynamic noise levels for each scale. Original model is found to reduce the noise level by 10 dB, while two-fold increase in length dimensions reduces the noise by 12 dB. Validation of numerical solution using wind tunnel experimental measurements are presented as well.

  • PDF

An Aerodynamic Noise Reduction Design at Inter-coach Space of High Speed Trains Based on Biomimetic Analogy

  • Han, Jae-Hyun;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • v.4 no.3
    • /
    • pp.74-79
    • /
    • 2011
  • Recent years have witnessed speed up of moving vehicles such as high-speed of trains. Increase in speed entails concomitant increase in turbulent air flow which contributes toward increased aerodynamic noise. The proposed method for aerodynamic noise reduction is based on a biomimetic design of owl feather. The five morphological parameters of the owl feather are extracted from close observation, and simulation cases are constructed by applying design of experiments methodology. Swirling strength for each case is obtained through steady-state CFD analysis, and key morphological parameters that affect the turbulence are identified. Large eddy simulations (LES) are then performed on selected cases to predict the air turbulence. Different cases show varying vortex distributions which are expected to lead to varying aerodynamic noise levels.

The aero-acoustic noise reduction based on biomimetics : A case study (생체모방공학을 이용한 공력 소음 저감 기초 연구)

  • Han, Jae-H.;Kim, Tae-M.;Kim, Jung-S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.144-151
    • /
    • 2011
  • Recent years have witnessed speed up of moving vehicles such as high-speed of trains. Increase in speed entails concomitant increase in turbulent air flow which contributes toward aerodynamic noise. The proposed method for aerodynamic noise reduction is based on a biomimetic design of owl feather. The five morphological parameters of the owl feather is extracted from close observation, and simulation cases are constructed by applying design of experiments methodology. Swirling strength for each case is obtained through steady-state CFD analysis, and key morphological parameters that affect the turbulence are identified. Large eddy simulations (LES) are then performed on selected cases to predict the air turbulence. Different cases show varying vorticity distribution levels which is expected to lead to varying aerodynamic noise levels.

  • PDF

Numerical Investigation of Serration Effect on the Helmholtz Resonance (헬름홀츠 공진에서 톱니 효과에 대한 수치적 연구)

  • Lee, Seungsoo;Jeon, Minu;Lee, Soogab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • The flow-excited Helmholtz resonance phenomenon was investigated numerically using Reynolds averaged Navier-Stokes approach. The fundamental cause of the Helmholtz resonance phenomenon is known as shedding of a single discrete vortex from orifice edge that travels during one period of the oscillation. In this study, serrated deflector, which is biomimetic design of the owl's feather, is used to split a single vortex into small vortices. Rectangular deflector and serrated deflector are compared with numerical results of pressure and streamline inside the cavity. Consequently, the serration breaks the shedding period of vortex core and eliminates the resonance. Also, it changes the flow pattern in according to the location of different serration height. By making inflows and outflows occur simultaneously in spanwise direction in the cavity, the period of Helmholtz resonance disappears. Comparing between rectangular deflector and serrated deflector, the serrated deflector can deal with the Helmholtz resonance more effectively.

A modal approach for the efficient analysis of a bionic multi-layer sound absorption structure

  • Wang, Yonghua;Xu, Chengyu;Wan, Yanling;Li, Jing;Yu, Huadong;Ren, Luquan
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.249-266
    • /
    • 2016
  • The interest of this article lies in the proposition of using bionic method to develop a new sound absorber and analyze the efficient of this absorber in a ski cabin. Inspired by the coupling absorption structure of the skin and feather of a typical silent flying bird - owl, a bionic coupling multi-layer structure model is developed, which is composed of a micro-silt plate, porous fibrous material and a flexible micro-perforated membrane backed with airspace. The finite element simulation method with ACTRAN is applied to calculate the acoustic performance of the multi-layer absorber, the vibration modal of the ski cabin and the sound pressure level (SPL) near the skier's ears before and after pasting the absorber at the flour carpet and seats in the cabin. As expected, the SPL near the ears was significantly reduced after adding sound-absorbing material. Among them, the model 2 and model 5 showed the best sound absorption efficiency and the SPL almost reduced 5 dB. Moreover, it was most effctive for the SPL reduction with full admittance configuration at both the carpet and the seats, and the carpet contribution seems to be predominant.