• Title/Summary/Keyword: Ozone resistance properties

Search Result 39, Processing Time 0.025 seconds

Effect of Environmental Factors on the Properties of Polymeric Material : Oil and Ozone Reaction Time (고분자재료의 물성에 미치는 환경인자의 영향: 오일 및 오존반응시간)

  • 박찬영
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.511-515
    • /
    • 2000
  • The purpose of this experiment is to prepare ethylene propylene diene terpolymer(EPDM)/ acrylonitrile butadiene rubber(NBR) blend which represents good environmental resistant properties including favorable oil and ozone resistance. With incorporation of EPDM, NBR and other ingredients, the rubber and chemical additives were mixed by mechanical method such as Banbury mixer and open 2-roll mill. Then rubber vulcanizates were manufactured by hot press and mechanical properties, oil and ozone resistance of the test specimens were measured. The oil resistance and ozone resistance of EPDM and NBR, respectively, is remarkably improved by blending EPDM with NBR. The optimum results of oil and zone resistant characteristics were obtained at EPDM/NBR(=25/75 wt%) composition ratio.

  • PDF

Effect of Environmental Factors including Ozone on the Properties of EPDM Rubber and CR Rubber Blend (오존을 포함한 환경인자가 EPDM고무와 CR고무 블렌드의 물성에 미치는 영향)

  • Min, Seong Gi;Lee, Won Gi;Park, Ye Jin;Hyeon, Jung Won;Park, Chan Yeong
    • Journal of Environmental Science International
    • /
    • v.13 no.4
    • /
    • pp.421-427
    • /
    • 2004
  • With the help of mechanical mixing method such as Banbury mixer and open 2 roll mill, ethylene propylene diene terpolymer (EPDM) was blended with the chloroprene rubber (CR) then mechanical properties and ozone resistance test of blends were subsequently investigated. It was noted that the hardness increased with an increasing of CR contents. Generally the hardness was increased with heat aging time most likely due to the post cure. In ozone resistance test of blend, after 8 hours a portion of fine crack is obtained for pure CR. It is confirmed that ozone resistance is greatly improved by addition of 25wt% EPDM to CR.

Effect of Environmental Factors on the Properties of Polymeric Material(II) : Temperature and Ozone Exposure Time (고분자재료의 물성에 미치는 환경인자의 영향(II) : 온도 및 오존 노출시간)

  • 박찬영;박성수;민성기
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.73-77
    • /
    • 2001
  • This study examined blends of styrene butadiene rubber(SBR) and chloroprene rubber(CR) prepared from an open 2-roll mill following the conventional polymer blend method for a wide range of the blend composition. Rubber vulcanizates were manufactured by hot press and then mechanical properties, heat and ozone resistance of the specimens were examined. Due to the post cure during the aging test, hardness of vulcanizates was increased. It was found that the undesirable characteristics of heat and ozone resistance of pure SBR was significantly improved through the blending of SBR with CR.

  • PDF

Effects of Environmental Factors such as Temperature and Ozone Concentration on the Properties of BR/Crystalline Rubber Blend (BR고무/결정성고무 블렌드의 물성에 미치는 온도 및 오존농도 등의 환경인자의 영향)

  • Park, Chan-Young;Lee, Won-Kee;Min, Seong-Kee
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.44-50
    • /
    • 2010
  • The butadiene rubber(BR) blends with chloroprene rubber(CR) were prepared by mechanical mixing method. Cure characteristics, mechanical properties, ozone resistance properties and dynamic mechanical properties were subsequently examined. The properties of ozone resistance of pure BR was significantly improved through blending with 50 wt% CR. Dynamic characteristics determined from a Rheovibron generally showed two glass transition($T_g$) for the entire blends, $tan{\delta}$ peak monotonically shifted toward the higher temperature with the increasing content of CR. Optimum cure time of compound was significantly lengthened with loading of CR.

Studies on the Ozone Resistance and Physical Properties of SBR/EPDM Blend Compound due to EPDM Content Variation (EPDM 함량 변화에 따른 SBR/EPDM 블렌드 혼합물의 내오존성과 물리적 성질에 관한 연구)

  • Ha, Ki-Ryong;Lee, Jong-Cheol;Kim, Tae-Geun;Hwang, Ki-Seob
    • Elastomers and Composites
    • /
    • v.43 no.1
    • /
    • pp.8-17
    • /
    • 2008
  • Styrene-butadiene rubber(SBR) has good abrasion resistance, miscibility, and anti-vibration property. however, it is easily damaged by ozone and swelled by hydrocarbon fluids because of unsaturation part in main chain, that causes loss of visco-elasticity and reduction of product's life cycle. Therefore, object of this study is to cope with this problem. SBR is blended with various proportion of ethylene-propylene-diene terpolymer(EPDM), which has excellent ozone and oxygen resistance, to improve physical properties and ozone resistance, and diverse analytical techniques are used to measure morphology, glass transition temperature$(T_g)$, ozone-resistance, degradation temperature, static spring constant, hardness for considering a suitability for anti-vibration industrial product. We found that the blend consisting of SBR 70% and EPDM 30% showed no crack after ozone test and good miscibility between SBR and EPDM from this study.

Manufacturing technology of two-layer self bonding insulating tape (이중절연 자기융착테이프 제조기술)

  • 조용석;이철호;심대섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.890-893
    • /
    • 2001
  • Two-layer self bonding insulating tape consists of butyl rubber(IIR ; Isobutylene-isoprene rubber) adhesive layer and polyethylene protective film. Butyl rubber have inherent characteristics such as resistance to corrosion and water, low temperature flexibility, excellent electrical insulating properties also resistance to environmental effect such as ozone and ultraviolet. Polyethylene film was used for the purpose of good insulating properties and resistance to ozone and ultraviolet. The tape was manufactured using extrusion and calender method.

  • PDF

Cure Characteristics, Physical Properties and Ozone Resistance of Butyl Rubber and EPDM Rubber Blends (Butyl고무와 EPDM고무 블렌드의 경화특성, 물리적 성질 및 내오존성)

  • Park, Chan-Young;Hwang, Young-Bea
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.329-334
    • /
    • 2011
  • In general, butyl rubber(IIR : isobutylene isoprene rubber) has excellent gas permeability resistance and impact absorbance property as low resilience elastomer. In this experiment butyl rubber blends with EPDM(ethylene propylene diene monomer) were prepared by mechanical mixing method. Curing behavior, physical properties and ozone resistance etc. were subsequently examined. Measurement results of gas transmission rate test shows that butyl rubber contents above 50 wt% showed significant decrease in gas permeability resistant property. However, in butyl rubber/EPDM blend, EPDM contents above 25 wt% indicates no surface change due to improvement of ozone resistance under the condition of 50 pphm, $50^{\circ}C$, 120 hrs.

Cure Characteristics, Mechanical Property and Ozone Resistance of Natural Rubber/Bromo Isobutylene Isoprene Rubber Blend

  • Choi, Im Cheol;Lee, Won-Ki;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.168-174
    • /
    • 2018
  • Natural rubber (NR) and bromo-isobutylene-isoprene rubber (BIIR) were compounded with other formulation chemicals through polymer blending via a mechanical mixing method. After rubber vulcanization by hot-press compression molding, the cure characteristics, mechanical properties, and ozone resistance of the NR/BIIR blends were measured. As the BIIR content increased, the maximum torque of the blends decreased, while the optimum cure time and scorch time tended to increase. Furthermore, the hardness of the blends increased with increasing BIIR content, reaching the maximum value at 75 wt% BIIR, and decreased with a further increase in the BIIR loading. The tensile strength and elongation at break decreased with an increase in the BIIR content, reaching the minimum value at 75 wt% BIIR, and increased with a further increase in the BIIR content. In the ozone resistance test, cracks were not generated when the BIIR content was more than 75 wt%.

Cure characteristics, Mechanical Properties and Ozone Resistance of EPDM/SBR Blend Vulcanizates (EPDM/SBR 블렌드 가황체의 경화특성, 기계적 성질 및 내오존성)

  • Park, Chan-Young
    • Elastomers and Composites
    • /
    • v.43 no.2
    • /
    • pp.104-112
    • /
    • 2008
  • The ethylene propylene diene terpolymer (EPDM) blends with styrene butadiene rubber (SBR) were prepared from an open 2-roll mill following the conventional rubber blend method, and then cure characteristics, mechanical properties and ozone resistance were subsequently examined. With incorporation of SBR the torque value of the EPDM and SBR blends showed a gradual increase in the cure curve. The maximum torque value was obtained with lowest level at 25wt% of SBR and it was increased linearly with more than 25wt%. As the SBR loading increased scorch time and optimum cure time decreased. Hardness represented a maximum at 50wt% of SBR. However upper and lower than that value it decreased. It was found that the unfavorable characteristics of ozone resistance of pure SBR was significantly improved through the blending of SBR with EPDM.

Thermal Assisted UV-Ozone Treatment to Improve Reliability of Ag Nanoparticle Thin Films

  • Lee, Inhwa;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.41-44
    • /
    • 2014
  • We employed UV-Ozone treatment method for the fabrication of dense and highly conductive nanoparticle thin films. We demonstrated the UV-Ozone treatment effect on the silver nanoparticle thin films as a function of time and temperature. The capping layers of nanoparticles were decomposed after UV-Ozone treatment and dense nanoparticle thin films were obtained. Moreover, electrical and mechanical properties of the thin films after UV-Ozone treatment were measured by using resistance measurements under tension in an in-situ tensile tester. The initial resistance of nanoparticle thin films was decreased by 82.6% with optimized UV-Ozone treatment condition of $150^{\circ}C$ for 20 minutes.