• Title/Summary/Keyword: P-E curve shift

Search Result 4, Processing Time 0.025 seconds

Effects of Remanent Polarization State and Internal Field in Ferroelctric Film on the Hydrogen-induced Degradation Characteristics in Pt/Pb(Zr, Ti)O3/Pt Capacitor (강유전막의 잔류 분극 상태와 내부 전계가 Pt/Pb(Zr,Ti)O3/Pt 커패시터의 수소 열화 특성에 미치는 영향)

  • Kim, Dong-Cheon;Lee, Gang-Un;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.75-81
    • /
    • 2002
  • The ferroelectric properties of Pb(Zr,Ti)O$_3$[PZT] films degrade when the films with Pt top electrodes are annealed in hydrogen containing environment. This is due to the reduction activity of atomic hydrogen that is generated by the catalytic activity of the Pt top electrode. At the initial stage of hydrogen annealing, oxygen vacancies are formed by the reduction activity of hydrogen mainly at the vicinity of top Pt/PZT interface, resulting in a shift of P-E (polarization-electric field) hysteresis curve toward the negative electric field direction. As the hydrogen annealing time increases, oxygen vacancies are formed inside the PZT film by the inward diffusion of hydrogen ions, as a result, the polarization degrades significantly and the degree of P-E curve shift decreases gradually. The direction and the magnitude of the remnant polarization in the PZT film affect the motion of hydrogen ions which determines the degradation of polarization characteristics and the shift in the P-E hysteresis curve of the PZT capacitor during hydrogen annealing. When the remnant polarization is formed in the PZT film by applying a pre-poling voltage prior to hydrogen annealing, the direction of the P-E curve shift induced by hydrogen annealing is opposite to the polarity of the pre-poling voltage. The hydrogen-induced degradation behavior of the PZT capacitor is also affected by the internal field that has been generated in the PZT film by the charges located at the top interface prior to hydrogen annealing.

Study on the Shift in the P-E Hysteresis Curve and the Fatigue Behavior of the PZT Capacitors Fabricated by Reactive Sputtering (반응성 스퍼터링법으로 형성시킨 PZT 커패시티의 P-E 이력곡선의 이동현상 및 피로 특성 연구)

  • Kim, Hyun-Ho;Lee, Won-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.983-989
    • /
    • 2005
  • [ $PZT(Pb(Zr,Ti)O_3)$ ] thin films were deposited by multi-target reactive sputtering method on $RuO_2$ substrates. Pure perovskite phase PZT films could be obtained by introducing Ti-oxide seed layer on the $RuO_2$ substrates prior to PZT film deposition. The PZT films deposited on the $RuO_2$ substrates showed highly voltage-shifted hysteresis loop compared with the films deposited on the Pt substrates. The surface of $RuO_2$ substrate was found to be reduced to metallic Ru in vacuum at elevated temperature, which caused the formation of oxygen vacancies at the initial stage of PZT film deposition and gave rise to the voltage shift in the P-E hysteresis loop of the PZT capacitor. The fatigue characteristics of the PZT capacitors under unipolar wane electric field were different from those under bipolar wane. The fatigue test under unipolar wane showed the increase of polarization. It was thought that the ferroelectric domains which had been pinned by charged defects such as oxygen vacancies and the charged defects were reduced in number by combining with the electrons injected from the electrode under unipolar wave, resulting in the relaxation of the ferroelectric domains and the increase of polarization.

Evidence of Spin Reorientation by Mössbauer Analysis

  • Myoung, Bo Ra;Kim, Sam Jin;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.126-129
    • /
    • 2014
  • We report the crystallographic and magnetic properties of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ by means of X-ray diffractometer (XRD), a superconducting quantum interference device (SQUID) magnetometer, and a M$\ddot{o}$ssbauer spectroscopy. In particular, $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was studied by M$\ddot{o}$ssbauer analysis for evidence of spin reorientation. The chalcogenide material $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was fabricated by a direct reaction method. XRD analysis confirmed that $Ni_{0.3}Fe_{0.7}Ga_2S_4$ has a 2-dimension (2-D) triangular lattice structure, with space group P-3m1. The M$\ddot{o}$ssbauer spectra of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ at spectra at various temperatures from 4.2 to 300 K showed that the spectrum at 4.2 K has a severely distorted 8-line shape, as spin liquid. Electric quadrupole splitting, $E_Q$ has anomalous two-points of temperature dependence of $E_Q$ curve as freezing temperature, $T_f=11K$, and N$\acute{e}$el temperature, $T_N=26K$. This suggests that there appears to be a slowly-fluctuating "spin gel" state between $T_f$ and $T_N$, caused by non-paramagnetic spin state below $T_N$. This comes from charge re-distribution due to spin-orientation above $T_f$, and $T_N$, due to the changing $E_Q$ at various temperatures. Isomer shift value ($0.7mm/s{\leq}{\delta}{\leq}0.9mm/s$) shows that the charge states are ferrous ($Fe^{2+}$), for all temperature range. The Debye temperature for the octahedral site was found to be ${\Theta}_D=260K$.

The Third Intracellular Loop of truman ${\beta}_2$-adrenergic Receptor Expressed in E. coli Decreased Binding Affinity of Isoproterenol to ${\beta}_2$-adrenergic Receptor

  • Shin, Jin-Chul;Shin, Chan-Young;Lee, Mi-Ok;Lee, Sang-Bong;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.4 no.1
    • /
    • pp.103-109
    • /
    • 1996
  • To investigate the effect of the third intracellular loop (i3 loop) peptide of human $\beta$$_2$-adrenergic receptor on receptor agonist binding, we expressed third intracellular loop region of human $\beta$$_2$-adrenergic receptor as glutathione S-transferase fusion protein in E. coli. DNA fragment of the receptor gene which encodes amino acid 221-274 of human $\beta$$_2$-adrenergic receptor was amplified by polymerase chain reaction and subcloned into the bacterial fusion protein expression vector pGEX-CS and expressed as a form of glutathione-S-transferase (GST) fusion protein in E. coli DH5$\alpha$. The receptor fusion protein was identified by SDS-PAGE and Western blot using monoclonal anti-GST antibody. The fusion protein expressed in this study was purified to an apparent homogeneity by glutathione Sepharose CL-4B affinity chromatography. The purified i3 loop fusion proteins at a concentration of 10 $\mu\textrm{g}$/ι caused right shift of the isoproterenol competition curve of [$^3$H]Dihydroalprenolol binding to hamster lung $\beta$$_2$-adrenergic receptor indicating lowered affinity of isoproterenol to $\beta$$_2$-adrenergic receptor possibly due to the uncoupling of receptor and G protein in the presence of the fusion protein. The uncoupling of receptor and G protein suggests that i3 loop region plays a critical role on $\beta$$_2$-adrenergic receptor G protein coupling.

  • PDF