• Title/Summary/Keyword: PARALLEL BARS

Search Result 46, Processing Time 0.026 seconds

Biomechanical Analysis of the Tippelt Motion on the Parallel Bars (평행봉 Tippelt 동작의 운동역학적 분석)

  • Kim, Min-Soo;Back, Jin-Ho;Back, Hun-Sig
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.57-65
    • /
    • 2011
  • This research was conducted to biomechanically analyze Tippelt motion in parallel bars, and establish technical understanding. To achieve that goal, the performances of the Tippelt acts carried out by five world top-class national gymnasts in the parallel bars 3-dimensional cinematographic analysis and EMG analysis were conducted and following conclusion were obtained. The Tippelt motions of excellent national gymnasts perform tap motion through the down swing of a large circular movements, and perform kick-out motion rapidly extending shoulder joint angle and hip joint angle with the trunk in a position close to perpendicular position at the vertical downwardness of the grasping the bars. At this time, if handstand starting the movement is too delayed or rapidly down swung, it was shown that from the initial falling, unnecessary muscular power was wasted in trapezius, anterior deltoid, erector spinae, latissimus dorsi, upper rectus abdominis, lower rectus abdominis. The muscular parts in tap motion generating muscle action potential were pectoralis major, rectus femoris, upper rectus abdominis, lower rectus abdominis, and those in kick-out motion were upper rectus abdominis, lower rectus abdominis, trapezius and anterior deltoid.

The Kinematical Analysis of Parallel Bars Double Piked Landing Motion (평행봉 double piked 내리기 동작의 운동학적 분석)

  • Kwon, Oh-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.311-318
    • /
    • 2010
  • This study examined the double piked dismount among the landing techniques of parallel bars based on three-dimensional motion analysis. Four male national gymnasts were the subjects. This study was performed to provide quantitative data highlighting players strengths and weaknesses to enable more stable landing technique. The variables analyzed were the position and velocity of center of gravity(CG) and angles of shoulder joints, hip joints, and trunk. The results are as follows: S1 secured the height of flight with fast vertical rise. After the easy spin in the air, he conducted a stable landing maintaining a proper hip joints angle. S2, S3, and S4, however, began the backward somersault already before leaving the bars, so they moved backward greatly making it more difficult to achieve a higher flight path. As a result, they couldn't control the velocity of their backward movement at landing. For a stable landing, they have to maintain the negative shoulder angle when rising, minimize both antero-posterioror side-to-side movements by doing a strong tap using hip joints, to secure the height of flight before the somersault. Results also show that at the descent, they should conduct rapid spinning by increasing their shoulder and hip joints to the maximum while controlling their velocity.

Locating Reinforcing Bars in Concrete Structures Using Generalized Hough Transform of Radar Image (일반화 Hough변환을 응용한 콘크리트 레이더 화상 내 실제 철근위치의 검출 해석)

  • ;魚本健人
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.23-31
    • /
    • 2000
  • Locating reinforcing bars, in particular to know their accurate depths, is very important in radar inspection of concrete structures. By the way, an accurate depth estimation of reinforcing bars in concrete structures by the radar is not easy because the microwave propagation velocity in test area is generally unknown. This problem can be solved by generalized Hough transformation technique. Using this technique, the microwave propagation velocity in test area can be detected from the radar image, which appear as hyperbolas conveying the velocity information in their shape. A developed speed-up technique for the computation of the Generalized Hough transformation is also investigated in this study. As a result, although it becomes difficult to locate reinforcing bars when multiple parallel bars lying too close together, there is a possibility of detecting accurate depths of reinforcing bars in test area by the proposed method

Analysis of the Research Trend of Artistic Gymnastics on the Sports Biomechanics (기계체조의 운동역학적 연구동향 분석)

  • Han, Yoon-Soo;Kwon, Oh-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.93-101
    • /
    • 2007
  • The purpose of this study was to analyze the research trends of artistic gymnastics on the kinetics. This study analyzed the 76 published papers in the Journal of Korean Alliance for Health, Physical Education, Recreation & Dance and Korean Journal of Sport Biomechanics between 1995 and 2006. Papers were split into two groups for analysis, 1995-1999 and 2000-2006, and classified according to research methods, areas, and main topics. Conclusions are as follow. First, method of research were kinematical research(80.3%), kinetic(17.1%), and EMG research(2.6%). Second, areas of research were hi-bar(31.6%), vault(23.7%), parallel bars(21.1%), floor exercise(13.2%), rings(3.9%), balance beam(3.9%), uneven bars(2.6%). Last, main topic of research were focused on vault Tsukahara skill(13.9%), hi-bar flight skill(11.4%), parallel bars support skill(10.1%), hi-bar dismount skill(8.9%), floor exercise salto skill(8.9%).

The Kinematic Analysis of Peters Motion on Parallel bars (평행봉 피터스 동작의 운동학적 분석)

  • Yoon, Hee-Joong;Yoon, Chang-Sun;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.15-26
    • /
    • 2004
  • The purpose of this study was to investigate the kinematic variables of peters motion in parallel bars. The subjects were 3 male national gymnasts. For this study, kinematic data were collected using video camera. Coordinate data were low-pass filtered using a fourth-order Butterworth with cutoff frequency of 6Hz. Each valuables analyzed was used to compare kinematic features between the subjects. The conclusions were as follows; 1. For a stable regrasp motion, the subjects appeared to increase horizontal and vertical displacement during the DS phase because it induce a vertical elastic of body and reaction of bar for the US phase. 2. For a stable hand standing motion of the regrasp, the subjects appeared to maintain the fast vertical and horizontal velocity during the DS phase, but in contrary during the US and Air phase the vertical and horizontal velocity appeared to do decrease. 3. When the arm lean angle and the trunk lean angle maintain a big angle during the DS phase, the subjects appeared to do a stable performance to release in a high position.

A Kinematical Analysis of the Kenmotsu on the Parallel Bars (평행봉 Kenmotsu 동작의 운동학적 분석)

  • Kong, Tae-Ung;Kim, Young-Sun;Yoon, Chang-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.61-70
    • /
    • 2005
  • The purpose of study was to investigate the kinematic variables of Kenmotsu motion in Parallel bars. To this study, by 3 dimensional kinematical analysis of 4 male national gymnasts participants in the 28th Athens Olympic Game in 2004, kinematic data collected using video camera. Coordinate data were smoothed by using a fourth-order Butterworth low pass digital filter with cutoff frequency of 6Hz. The conclusions were as follows. 1. In P2, because the constrained swing movement made the movement of a rising back difficult7, the movements of Reg. were performed at low position after Air phase. 2. In E5 event, for the shake of a stable handstand and applied techniques like a Belle(E-value), a Belle Piked(super E-value), a vertical velocity in E2, a horizontal velocity in E3 and a vertical velocity in E4 were necessary for high velocities. 3. In E4 event, it was appeared that for a flexible body's movement of a vertical up-flight, the large angle of the shoulder joint and the flexion & extension of the hip joint were necessary in Air phase and a long flight time and vertical displacement made Reg. movements stable at the high position.

Rader Image Processing for Locating of Reinforcing bars in Concrete (콘크리트내 철근위치검출을 위한 레이더화상처리기술)

  • 박석균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.807-812
    • /
    • 1999
  • Locating of reinforcing bars, in particular to know their accurate depths, is very important thing in radar inspection of concrete structures. By the way, a depth estimation of reinforcing bars in concrete structures by the radar is not easy because micorwave propagation velocity in test area is generally unknown. This problem can be solved by Generalized Hough transformation technique. Using this technique, the micorwave propagation velocity in test area can be detected from the radar image, which appear as hyperbolas conveying the velocity information in their shape. A developed speed-up technique for the computation of the Generalized Hough transformation is also investigated in this study. As a result, although it becomes difficult to locate reinforcing bars when multiple parallel bars lying too close together, there is a possibility of detecting accurate depths of reinforcing bars in test area by the proposed method.

  • PDF

Assessment of Safety of Playground Equipment in Elementary Schools in Taegu (대구시내(大邱市內) 국민학교(國民學校) 놀이터의 안전성(安全性) 조사(調査))

  • Park, Jung-Han;Yun, Soon-Gil
    • Journal of Preventive Medicine and Public Health
    • /
    • v.24 no.3 s.35
    • /
    • pp.414-427
    • /
    • 1991
  • To assess the safety of playground equipments in the elementary schools of Taegu, a site visit was made to 117 elementary schools out of 119 schools between 1st and 30th of April 1991. Safety criteria were developed on the bases of Massachusetts' Playground Safety Check List, standard height of Korean children of 6-12 years old, and source book for designing playground equipments. There were eleven different kinds of playground equipments installed in 117 schools but the number of equipments was about 50-60% of the minimum requirement set by the Ministry of Education except chin-up bar. Among the installed equipments, 47.3% of swings, 16.6% of parallel bars, 20.0% of monkey bars, and 16.0% of slides were broken down. None of the swings, slides, seesaws, monkey bars, and sandboxes met the safety criteria to the full but 59.0 of chin-up bars, 31.4% of Parallel bars, and 13,5% of stumps met the criteria fully. The proportions of equipments that were dangerous for children to play on were 26.4% for slides, 20.0% for monkey bars, 11.6% for seesaws, 10.4% for parallel bars, 9.8% for sandboxes, 7.4% for swings and stumps, and 3.9% for chin-up bars. The rests were either in need of repair or broken down. It was revealed by this survey that the playground equipments were too short in number to meet the minimum requirement, designs and size were not standardized, and many of the equipments were involved with the risk of child accidents. Therefore, a safety standard for the playground equipments should be developed and the existing equipments should be repaired immediately.

  • PDF

Kinematical Analysis of Basket with 1/2 Turn to Handstand on Parallel Bars (평행봉 Basket with 1/2 Turn to Handstand 기술 분석)

  • Back, Jin-Ho;Park, Jong-Chul;Lee, Yong-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.165-174
    • /
    • 2007
  • The subject of this study was male apparatus gymnastics athlete who had scored high points doing basket with 1/2 turn on parallel bars. Then 3D motion analysis were used to calculate & analyse kinematic variables of Basket with 1/2 turn to Handstand. 1. The total average time spent for Basket with 1/2 turn took $2.16{\pm}.08sec$, at the downward upward phase took $.58{\pm}0.00sec$, $.23{\pm}.00sec$, at flight phase took $.28{\pm}.01sec$, at connected area phase took $.72{\pm}0.21sec$, at rotation area phase took $.35{\pm}.14sec$. To have a successful performance, there should be faster speed and velocity to rotate at the downward upward phase, then the upward velocity and height must be used adequately. Moreover, the speed must be faster at the flight connect phase to stabilize Center of Mass(CM) for the body, and must secure more time at the rotation area to have more stable performance. 2. After handstand on parallel bars while moving CM to right hand side, and It must be performed with big and magnificent performance with putting both hand's center to far away from the parallel bars. 3. Furthermore, CM must be moved fast from downwards to right hand side, and CM must be moved fast in vertical movement at upward and flight phase to avoid CM from moving back and forth, and left and right. 4. At downwards, the subject must rotate as bis as possible using hip-joint as wide as possible and at upwards, must put his body to vertical to have stable performance. While rotating or turning, it is better to do with bigger shoulder angle and have to make sure that trunk angle must be not scattered. To perform better and more positive in basket with 1/2 turn on parallel bars, the centrifugal force must be used big and fast at downward, and at upward and flight phase, downward movement must change to vertical movement as soon as possible while turning movement must happen at handstand position. Time spent must be shorten at connected area to stabilize CM and turning must be natural as possible while securing the necessary time of movement to well-balanced. Also, the body must be vertically closed from the ground.

Kinematical Analysis of Tippelt Motion in Parallel Bars (평행봉 Tippelt 동작의 기술 분석)

  • Back, Hun-Sik;Kim, Min-Soo;Moon, Byoung-Yong;Back, Jin-Ho;Yoon, Chang-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.167-176
    • /
    • 2007
  • The purpose of this study was to offer suitable model for performing Tippelt motion and data for training Tippelt motion through the quantitative kinematical analysis of Tippelt motion in parallel bars. The results of analysing kinematic variations through three-dimensional reflection analysis of three members of the national team as the objects of the study were shown as follows. 1. It seemed that the shoulder-joints which are stretched as much as possible affects the whole Tippelt motion while one is swinging downward. The time of process of the center of mass for the body reaching to the maximum flection point should be quick and body's moving from the vertical phase to the front direction should be controled as much as possible. 2. While one is swinging upward, the stability of flying motion could be made certain by the control of body's rapid moving to the front direction and stretching shoulder-joints and hip-joint to reverse direction. 3. While one is flying upward, the body should be erected quickly and lessening the angle of the hip-joint affects the elevation of flight. When the powerful counter turn motion is performed, the stable motion could be made. As a result of this study, It seems that sudden fall and the maximum stretch of shoulder-joints is important during performing Tippelt motion in parallel bars. Also, it concludes that the maximum bending of hip-joints at the starting point of upward swing, sudden stretch to the reverse direction of shoulder-joints and hip-joints when one is leaving bars, control of body's moving to the front direction, and lessening the angle of hip-joints at the flying phase is important.