• Title/Summary/Keyword: PDLs 22

Search Result 8, Processing Time 0.031 seconds

Synthesis and evaluation of PDLs22 recombinant protein (PDLs22 재조합 단백질의 합성과 평가)

  • Lee, Kyoung Yeon;Choi, Yong-Seok;Lee, You-Jin;Bae, Hyun-Sook;Kim, Heung-Jeong;Cho, Kwang-Hee;Jang, Hyun-Seon;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.35-44
    • /
    • 2007
  • Periodontal ligament (PDL) is the connective tissue located between the tooth root and alveolar bone. In a previous study, PDLs22 was isolated as a PDL-specific gene by using subtractive hybrid-ization between cultured PDL fibroblasts and gingival fibroblasts. It was also suggested that PDLs22 plays important roles in the development, differentiation and maintenance of periodontal tissues. However, little is known about functional study of PDLs22 using recombinant protein in PDL fibroblast differentiation and periodontium formation. In this study, in order to produce the PDLs22 recombinat protein, PDLs22 expression vector were constructed and expressed its protein in various host cell and temperature conditions. The results were as follows: 1. PDLs22 protein was not strongly expressed In the induction system using pRSET-PDLs22 construct. 2. When the BL21(DE3) pLysS was used as a expression host, PDLS22 protein was strongly ex-pressed in the induction system using pHCEIIBNd-PDLs22 construct. 3. The PDLs22 protein was recognized at a molecular weight of 28 kDa in western blots. 4. Almost of the expressed PDLs22 protein was not soluble and observed like as inclusion body. 5. The protein solubility was not improved after modification of induction time and temperature during PDLs22 protein production. In this study, the system for the PDLs22 protein production was connstructed. However, the re-results suggest that further studies will be needed to produce the considerable amount of PDLs22 re-combinat protein, which can use for the periodontal regeneration.

Expression of PDL-specific protein;PDLs22 on the developing mouse tooth and periodontium (발생중인 생쥐 치아 및 치주조직에서 치주인대-특이 단백질; PDLs22의 발현)

  • Park, Jung-Won;Park, Byung-Ki;Kim, Sang-Mok;Kim, Byung-Ock;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • The periodontal ligament(PDL) is a unique tissue that is crucial for tooth function. However, little is known of the molecular mechanisms controlling PDL function. PDL-specific protein;PDLs22 had been previously identified as a novel protein isolated from cultured human PDL fibroblasts using subtraction hybridization between human gingival fibroblasts and PDL fibroblasts. The aim of this study was to examine the expression pattern and tissue localization of PDLs22 protein in embryonic and various postnatal stages of developing mouse using immunohistochemical staining. Embryos (E18) and postnatal (P1, P4, P5, P15, P18) were decapitated and the heads were fixed overnight in a freshly prepared solution of 4% paraformaldehyde. Some specimens were decalcified for $2{\sim}4$ weeks in a solution containing 10% of the disodium salt of ethylenediamine-tetraacetic acid (EDTA). Next, tissues were dehydrated, embedded in paraffin and sectioned serially at $6{\mu}m$ in thickness. Polyclonal antiserum raised against PDLs22 peptides, ISNKYLVKRQSRD, were made. The localization of PDLs22 in tissues was detected by polyclonal antibody against PDLs22 by means of immunohistochemical staining. The results were as follows; 1. Expression of PDLs22 protein was not detected in the tooth germ of bud and cap stage. 2. At the late bell stage and root formation stage, strong expression of PDLs22 protein was observed in developing tooth follicle, osteoblast-like cells, and subodontoblastic cells in the tooth pulp, but not in gingival fibroblasts, ameloblasts and odontoblasts of tooth germ 3. In erupted tooth, PDLs22 protein was intensely expressed in PDL and osteoblast-like cells of alveolar bone, but not in gingival fibroblasts, mature osteocytes and adjacent salivary glands. 4. In the developing alveolar bone and mid-palatal suture, expression of PDLs22 protein was seen in undifferentiated mesenchymal cells and osteoblast-like cells of developing mid-palatal suture, but not in mature osteocytes and chondrocytes. These results suggest that PDLs22 protein may play an important role in the differentiation of undifferentiated mesenchymal cells in the bone marrow and PDL cells, which can differentiate into multiple cell types including osteoblasts, cementoblasts, and PDL fibroblasts. However, more researches should be performed to gain a better understanding of the exact function of PDLs22 protein which related to the PDL cell differentiation.

Effect of Enamel Matrix Drivatives application on the expression of PDLs17, PDLs22 of cultured human periodontal ligament cells in vitro (Enamel Matrix Derivatives가 사람 치주인대 세포의 특이유전자인 PDLs17, PDLs22의 발현에 끼치는 효과)

  • Han, Geun-A;Jang, Hyun-seon;Kok, Jung-Ki;Park, Ju-Chol;Kim, Heoung-Jung;Kim, Jung-Gwan;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.333-344
    • /
    • 2004
  • The enamel matrix derivative (EMD) has been recently used in the periodontal regenerative techniques. The present study was established to investigate the influence of EMD on human periodontal ligament cells using expression of mRNA of periodontal ligament specific gene (PDLs)17, PDLs22, type I collagen when EMD applied to periodontal ligament cells. Periodontal ligament cells were obtained from a healthy periodontium and cultured in Dulbecco's modified Eagle's medium (DMEM) plus 10% fetal bovine serum and ${\beta}-glycerophosphate$ with ascorbic acid. Test groups were two; One adds EMD in culture media and another added EMD and Dexamethasone (DEX) in culture media. Positive control group added DEX in culture media, and negative control group adds niether of EMD nor DEX. $Emdogain^{(R)}$ (Biora, Sweden, 30 mg/ml) was diluted by 75 ${\mu}g/ml$ concentration to culture media. For reverse transcription-polymerase chain reaction (RT-PCR), total RNA isolated on days 0, 7, 14 and 21. mRNA of PDLs17 was expressed on days 14 and 21 in EMD or DEX group, and expressed on days 7, 14 and 21 in EMD plus DEX group, the other side, expressed on days 21 in negative control group. mRNA of PDLs22 expressed on days 7, 14 and 21 in EMD group, and expressed on days 14 and 21 in DEX group, and expressed on days 7, 14 and 21 in EMD plus DEX group. Negative control group expressed on days 14 and 21. Type I collagen was expressed on all days and all groups. These results indicate that EMD promotes differentiation of periodontal ligament cells, and this is considered to offer basis that can apply EMD to periodontal tissue regeneration technique.

Effects of $H_2O_2$ and ascorbic acid on TIMP-2, Type1 collagen, and PDLs22 levels in human periodontal ligament fibroblasts (($H_2O_2$와 ascorbic acid가 사람 치주인대섬유모세포의 TIMP-2, Type 1 collagen, PDLs22 발현에 끼치는 효과)

  • Choi, Yong-Sun;Kim, So-Young;Choi, Seong-Mi;Jang, Hyun-Seon;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.655-669
    • /
    • 2007
  • Reactive oxygen species (ROS) have been implicated in the pathogenesis of various diseases. And vitamin C has shown a protective effect for the tissues. The aim of this study was to evaluate the effects of $H_2O_2$ and ascorbic acid on matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinase (TIMP: TIMP-1, TIMP-2), Type 1 collagen, fibronectin, and PDLs22 level in human periodontal ligament fibroblasts (hPDLF) via reverse transcription-polymerase chain reaction (RT-PCR). hPDLF was obtained from a healthy periodontium and cultured in Dulbecco's modified Eagles's medium plus 10% fetal bone serum. The concentration of ascorbic acid in hPDLF was $50{\mu}g/ml$, and that of $H_2O_2$ in hPDLF was 0.03% and 0.00003%. Ascorbic acid only, $H_2O_2$ only and mixture of ascorbic acid and $H_2O_2$ were applied with hPDLF for 1-, 3-, and 30-min. respectively. The gene expression of MMP-1-, TIMP-1-, TIMP-2-, Type 1 collagen-, fibronectin-, and PDLs22-mRNA in hPDLF was analysed via RT-PCR. The results were as follows; 1. hPDLF in response to 30-min. incubation with 0.03% $H_2O_2$ did not show any gene expression. 2. In all the experimental groups, the gene expression of fibronectin mRNA showed the decreased tendency compared to control. 3. In all the experimental groups, the gene expression of TIMP-1 mRNA showed the tendency similar to control. 4. hPDLF in response to 30-min. incubation with 0.03% $H_2O_2$ and ascorbic acid increased mRNA induction for MMP-1. 5. In all the experimental groups, hPDLF increased mRNA induction for PDLs22, collagen type 1, and TIMP-2 compared to control. Within the limited experiments, $H_2O_2$ and ascorbic acid increased mRNA induction for PDLs22, collagen type 1, TIMP-2 in hPDLF. More research will be needed in order to confirm the relative importance of the different roles of ROS and antioxidants in hPDLF from a periodontal regeneration or repair standpoint.

Immunohistochemical localization of several protein changes in periodontal ligament during tooth eruption and interdental separation of rats (흰쥐의 치아 맹출과 치간 이개 과정에서 수종의 치주인대 단백질 발현의 변화에 관한 면역 조직화학적 연구)

  • Lim, Sung-Hoon;Park, Hyung-Soo;Yoon, Young-Jooh;Kim, Kwang-Won;Kim, Heung-Joong;Jeong, Moon-Jin;Park, Joo-Cheol
    • The korean journal of orthodontics
    • /
    • v.34 no.1 s.102
    • /
    • pp.71-81
    • /
    • 2004
  • In this study, we attempt to investigate the mechanisms by which PDL cells regulate osteoclast formation and also tc know whether PDL retained their characteristic phenotype during tooth eruption and interdental separation. Rats were prepared at developmental days 21 (pre-root formation), 27(toot development), 34(advanced root formation/eruption) and at later times(adult rats). To induce severe resorption state of alveolar bone and tooth root, interdental separation with brass wire was performed between the lower first and second molars for 2 weeks in adult rats. Rat mandibles were demineralized and embedded in paraffin, and horizontal and frontal section were prepared for immuno-histochemical analysis using PDL-specific protein 22 (PDLs22), receptor activator of NFKB ligand (RANKL) and osteoprotegerin (OPG) antibodies. 1. Root formation and eruption stage of tooth development. 1) PDLs22 immunolocalization was observed in tooth follicle/PDL cells and osteoblasts throught out the root formation and eruption stages of tooth development. 2) RANKL expression became stronger at eruption stage than root formation stage of tooth development. 3) Strong expression of OPG was detected in follice/PDL cells of toot formation stage but it was decreased with tooth eruption. 2. Interdental separation between lower first and second molar 1) Comparared to normal animal, multinucleated osteoclasts and odontoclasts were markedly induced in the alveolar bone and tooth root with PDL remodeling in hematoxylin-eosin section. 2) PDLs22 expression was decreased with interdental separation. 3) RANKL expression was Increased with interdental separation in PDL fibroblasts, osteoblasts, odontoclasts and it lacunae, resorting dentin, cementum and bone matrix. 4) OPG expression was slightly decreased in the PDL cells adjacent to the alveolar bone and root surface with interdental separation. These results suggested that during tooth eruption and tooth movement, RANKL and OPG in the periodontal tissues are important determinants regulating balanced alveolar bone and tooth root resorption. And it is also suggested that PDL cells retained their characteristic phenotype during tooth eruption and interdental separation except for the short period of PDL remodeling.

Cellular study of replicative senescence in human periodontal ligament fibroblast using molecular biology (분자생물학을 이용하여 복제노화된 사람치주인대섬유모세포의 세포학적 연구)

  • Kim, Byung-Ock;Cho, Il-Jun;Park, Joo-Cheol;Kook, Joong-Ki;Kim, Heung-Joong;Jang, Hyun-Seon
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.3
    • /
    • pp.623-634
    • /
    • 2005
  • Human periodontal ligament fibroblast(hPDLF) is very important to cure periodontal tissue because it can be diverged into various cells. This study examined the expression of MMP-1, TIMP-1, periodontal ligament specific PDLs22, Type I collagen, Fibronectin, TIMP-2, telomerase mRNA in a replicative senescence of hPDLF. The periodontal ligament tissue was obtained from periodontally healthy and non-carious human teeth extracted for orthodontic reasons at the Chosun University Hospital of Dentistry with the donors' informed consent. The hPDLF cells were cultured in a medium containing Dulbecco's modified Eagle medium(DMEM, Gibco BRL, USA) supplemented with 10% fetal bovine serum(FBS, Gibco BRL, USA) at 37C in humidified air with 5% $CO_2$. For the reverse transcription-polymerase chain reaction(RT-PCR) analysis, the total RNA of the 2, 4, 8, 16, 18, and 21 passage cells was extracted using a Trizol Reagent(Invitrogen, USA) in replicative hPDL cells. Two passage cells, i.e. young cells, served as the control, and ${\beta}-actin$ served as the internal control for RT-PCR The results of this study about cell morphology and gene expression according to aging of hPDLF using RT-PCR method are as follows: 1. The size of hPDLF was increased with aging and it was showed that the hPDLF was dying in the final passage. 2. PDLs22 mRNA was expressed in young hPDLF of the two, four, and six passage. 3. TIMP-1 mRNA was expressed in young hPDLF of the two and four passage. 4. There was a tendency that MMP-1 mRNA was weakly expressed over eighteen. 5. Type 1 collagen mRNA was expressed in almost all passages, but it was not expressed in the final passage. 6. Fibronectin mRNA was observed in all passages and it was weakly expressed in the final passage. 7. TIMP-2 and telomerase mRNA were not expressed in this study. Based on above results, it was observed that PDLs22, Type 1 collagen, Fibronectin, MMP-1. and TIMP-1 mRNA in hPDLF were expressed differently with aging. The study using the hPDLF that is collected from healthy patients and periodontitis patients needs in further study.

Characterization and Genetic Profiling of the Primary Cells and Tissues from Mandible of Mouse Fetus and Neonate

  • Kang, Jung-Han;Nam, Hyun;Park, Soon-Jung;Oh, Keun-Hee;Lee, Dong-Seup;Cho, Jae-Jin;Lee, Gene
    • International Journal of Oral Biology
    • /
    • v.32 no.1
    • /
    • pp.13-22
    • /
    • 2007
  • The stem cell research is emerging as a cutting edge topic for a new treatment for many chronic diseases. Recently, dental stem cell would be possible for regeneration of tooth itself as well as periodontal tissue. However, the study of the cell characterization is scarce. Therefore, we performed the genetic profiling and the characterization of mouse fetus/neonate derived dental tissue and cell to find the identification during dental development. We separated dental arch from mandibles of 14.5 d fetal mice and neonate 0 d under the stereoscope, and isolated dental cells primarily from the tissues. Then, we examined morphology and the gene expression profiles of the primary cells and dental tissues from fetus/neonate and adult with RT-PCR. Primary dental cells showed heterogeneous but the majority was shown as fibroblast-like morphology. The change of population doubling time levels (PDLs) showed that the primary dental cells have growth potential and could be expanded under our culture conditions without reduction of growth rate. Immunocytochemical and flow cytometric analyses were performed to characterize the primary dental cell populations from both of fetus (E14.5) and neonate. Alpha smooth muscle actin (${\alpha}-SMA$), vimentin, and von Willebrand factor showed strong expression, but desmin positive cells were not detected in the primary dental cells. Most of the markers were not uniformly expressed, but found in subsets of cells, indicating that the primary dental cell population is heterogeneous, and characteristics of the populations were changed during culture period. And mesenchymal stem cell markers were highly expressed. Gene expression profile showed Wnt family and its related signaling molecules, growth factors, transcription factors and tooth specific molecules were expressed both fetal and neonatal tissue. The tooth specific genes (enamelin, amelogenin, and DSPP) only expressed in neonate and adult stage. These expression patterns appeared same as primary fetal and neonatal cells. In this study we isolated primary cells from whole mandible of fetal and neonatal mice. And we investigated the characteristics of the primary cells and the profile of gene expressions, which are involved in epithelial-mesenchymal interactions during tooth development. Taken together, the primary dental cells in early passages or fetal and neonatal mandibles could be useful stem cell resources.