• Title/Summary/Keyword: PFZ

Search Result 15, Processing Time 0.031 seconds

Study on the Relationship Between Microstructure and Creep-Rupture Behavior of GTD 111 (Ni기 초내열합금 GTD 111의 크리프 파단에 미치는 미세조직의 영향)

  • Sin, Hyeon-Jong;Kim, In-Su;Lee, Jae-Hyeon;Heo, Seong-Gang;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.8-14
    • /
    • 2001
  • Microstructural evolution and creep failure behavior of GTD 111 have been studied. Solidification and precipitation behaviors of the alloy during casting have been analyzed by microstructural observations. It has been found that MC carbides solidify just before the $\gamma$/$\gamma$' eutectic solidification. The ηphase was found to be formed by transformation of Ti-rich $\gamma$'phase. PFZ has formed in the vicinity of the transformed $\eta$ phase. A few MC particles, which have been identified as TaC, precipitated within the PFZ. Creep failure along grainboundary was dominant at and above $871^{\circ}C$. Creep failure above$ 871^{\circ}C$ was caused by the propagation of surface cracks and internal cracks. Creep crack has initiated at the microporosities embedded on the grainboundary. The $\eta$phase and PFZ have been found to be little or no effect on creep crack initiation.

  • PDF

Trophic Role of Heterotrophic Nano- and Microplankton in the Pelagic Microbial Food Web of Drake Passage in the Southern Ocean during Austral Summer (남극 하계 드레이크 해협의 미세생물 먹이망에서 종속영양 미소형 및 소형플랑크톤의 역할)

  • Yang, Eun-Jin;Choi, Joong-Ki;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.33 no.4
    • /
    • pp.457-472
    • /
    • 2011
  • To elucidate the trophic role of heterotrophic nano- and microplankton (HNMP), we investigated their biomass, community structure, and herbivory in three different water masses, namely, south of Polar Front (SPF), Polar Front Zone (PFZ), the Sub-Antarcitc Front (SAF) in the Drake Passage in the Southern Ocean, during the austral summer in 2002. We observed a spatial difference in the relative importance of the dominant HNMP community in these water masses. Ciliates accounted for 34.7% of the total biomass on an average in the SPF where the concentration of chlorophyll-a was low with the dominance of pico- and nanophytoplankton. Moreover, the importance of ciliates declined from the SPF to the SAF. In contrast, heterotrophic dinoflagellates (HDFs) were the most dominant grazers in the PFZ where the concentration of chlorophyll-a was high with the dominance of net phytoplankton. HNMP biomass ranged from 321.9 to 751.4 $mgCm^{-2}$ and was highest in the PFZ and lowest in the SPF. This result implies that the spatial dynamic of HNMP biomass and community was significantly influenced by the composition and concentration of phytoplankton as a food source. On an average, 75.6%, 94.5%, and 78.9% of the phytoplankton production were consumed by HNMP in the SPF, PFZ, and SAF, respectively. The proportion of phytoplankton grazed by HNMP was largely determined by the composition and biomass of HNMP, as well as the composition of phytoplankton. However, the herbivory of HNMP was one of the most important loss processes affecting the biomass and composition of phytoplankton particularly in the PFZ. Our results suggest that the bulk of the photosynthetically fixed carbon was likely reprocessed by HNMP rather than contributing to the vertical flux in Drake Passage during the austral summer in 2002.

The Microstructure of Retrogression Reaged Al-Li 8090 Alloys (퇴화처리(RRA)한 Al-Li 8090 합금의 미세조직에 관한 연구)

  • Kim, Seon-Hwa;Lee, Jong-Gwon
    • Korean Journal of Materials Research
    • /
    • v.5 no.5
    • /
    • pp.575-582
    • /
    • 1995
  • Al 8090합금의 퇴화처리시에 나타나는 금속간화합물 변화과정과 PFZ 생성 및 입계석출물의 거동을 TEM을 사용하여 조사하였다. 기지에서는 $\delta$상, T$_{1}$ 상과 S'상이 모든 시편에서 관찰되었고, 입계어슨 PFZ이 형성되었다. 본 연구에 사용된 Al합금의 초기PFZ의 생성 기구는 입계의 임계공공 농도에 의한 것으로 나타났다. 2단계 열처리시 시간이 2분 이상이면 입계에 석축물이 형성되었다. 입계에는 중간단계로 5회전대칭축을 가지는 준안전상의 icosahedral상의 생성되었다. 평형 입계석출물은 사방정의 $Al_{13}$Fe$_{4}$였다.

  • PDF

Transient Liquid Phase Bonding of Directionally Solidified Ni Base Superalloy, GTD-111(II) -Microstructural Change of Base Metal during Bonding Process - (일방향응고 Ni기초내열합금 GTD-111의 천이액상확산접합(II) -접합공정에서 모재조직의 변화-)

  • 강정윤;황형철;김인배;김대업;우인수
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.89-96
    • /
    • 2003
  • The change of microstructures in the base metal during transient liquid phase bonding process of directionally Ni base superalloy, GTD-111 was investigated. Bonds were fabricated using a series of holding times(0-7.2ks) at three different temperatures(1403, 1418 and 1453K) under a vacuum of 13.3mPa. In raw material, ${\gamma}$- ${\gamma}$' eutectic phases, platelet η phases, MC carbide and PFZ were seen in interdendritic regions or near grain boundary and size of primary ${\gamma}$' precipitates near interdendritic regions were bigger than core region. The primary ${\gamma}$' precipitates in dendrite core were dissolved early in bonding process, but ${\gamma}$' precipitates near interdendritic regions were dissolved partially and shape changed. The dissolution rate increased with increasing temperature. Phases in interdendritic regions or near pain boundary continually changed with time at the bonding temperature. In the bonding temperature of 1403K, eutectic phases had not significantly changed, but η phases had transformed from platelet shape to needle morphology and PFZ region had widened with time. The interdendritic region and near pain boundary were liquated partially at 1423k and fully at 1453k by reaction of η phases and PFZ. In the bonding temperature of 1453K, interdendritic region and near pain boundary were liquated and then new phases which mixed with η phases, PFZ and MC carbide crystallized during cooling. Crystallized η phases transformed from rod shape to platelet shape with increasing holding time.

The Aging Characteristics of an RS-P/M Al-Zn-Mg- Zr-Mn-Cu Alloy (급속응고 분말법으로 제조한 Al-Zn-Mg-Zr-Mn-Cu합금의 시효특성)

  • 이갑호
    • Journal of Powder Materials
    • /
    • v.4 no.2
    • /
    • pp.100-105
    • /
    • 1997
  • In this study the changes of the hardness and microstructures during aging at 120$^{\cire}C$ of an RS-P/M Al-5.6wt%Zn-2.0wt%Mg-1.3wt%Zr-1.0wt%Mn-0.25wt%Cu alloy were studied using a transmission electron microscopy. The hardness increased rapidly at early stage of aging and reached the maximun when the specimen was aged for 24 hr. The many irregular-shaped $Al_4Mn$ and rod-shaped $Al_6Mn$ dispersoids with 0.1-0.4 $\mu$m in length were observed in the as-extruded alloy. The dark particles with 2-3 nm in size were observed in aged specimen for 5hr and those are thought to be G.P.zones or precursor of $\eta'$ precipitates. In aged specimen for 24 hr, the $\eta'$ phases were distributed homogeneously within the matrix and the PFZ with 30-40 nm in width was observed along the grain boundary. With further aging, the width of PFZ increased and $\eta$ phases were also detected within the matrix.

  • PDF

Effect of Sn Addition on the SCC Properties of Al-Cu-Mn Cast Alloy (Al-Cu-Mn 주조합금의 SCC 특성에 미치는 Sn 첨가의 영향)

  • Kim, Kwang-Nyeon;Kim, Kyung-Hyun;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.436-441
    • /
    • 2002
  • Effect of Sn addition on the stress corrosion cracking(SCC) resistance of the Al-Cu-Mn cast alley was investigated by C-ring teat and electrical conductivity measurement, The electrical conductivity and SCC resistance increased by Sn addition. The alley containing 0,10%Sn showed maximum electrical conductivity and the best SCC resistance. At the same composition, the electrical conductivity and SCC resistance increased from peak aged condition to ever aged condition. The PFZ and coarse precipitates along the grain boundary were observed from TEM micrographs. The fracture mode of the alloy was confirmed as intergranular type and showed brittle fracture surface. The SCC mechanism of the alloy was concluded as the anodic dissolution model, The maximum hardness was increased from 130Hv in the Sn-free alloy to 156Hv in the 0.10%Sn added alloy.

Effect of Cr/Ti/Al Elements on High Temperature Oxidation Behavior of a Ni-Based Superalloy with Thermal Exposure (고온 노출 니켈기 초내열합금 터빈 블레이드의 Cr/Ti/Al 성분이 고온 산화에 미치는 영향)

  • Byung Hak Choe;Sung Hee Han;Dae Hyun Kim;Jong Kee Ahn;Jae Hyun Lee;Kwang Soo Choi
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.77-86
    • /
    • 2023
  • High-temperature oxidation of a Ni-based superalloy was analyzed with samples taken from gas turbine blades, where the samples were heat-treated and thermally exposed. The effect of Cr/Ti/Al elements in the alloy on high temperature oxidation was investigated using an optical microscope, SEM/EDS, and TEM. A high-Cr/high-Ti oxide layer was formed on the blade surface under the heat-treated state considered to be the initial stage of high-temperature oxidation. In addition, a PFZ (γ' precipitate free zone) accompanied by Cr carbide of Cr23C6 and high Cr-Co phase as a kind of TCP precipitation was formed under the surface layer. Pits of several ㎛ depth containing high-Al content oxide was observed at the boundary between the oxide layer and PFZ. However, high temperature oxidation formed on the thermally exposed blade surface consisted of the following steps: ① Ti-oxide formation in the center of the oxide layer, ② Cr-oxide formation surrounding the inner oxide layer, and ③ Al-oxide formation in the pits directly under the Cr oxide layer. It is estimated that the Cr content of Ni-based superalloys improves the oxidation resistance of the alloy by forming dense oxide layer, but produced the σ or µ phase of TCP precipitation with the high-Cr component resulting in material brittleness.

Effects of Load Ratio on Fatigue Crack Growth in a TMT Treated Al-Zn-Mg Alloy (가공열처리한 Al-Zn-Mg 합금의 피로균열 성장거동에 미치는 하중비의 영향)

  • Byun, E.S.;Kim, S.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.4
    • /
    • pp.19-26
    • /
    • 1989
  • Fundmental fatigue crack propagation tests with C-T type specimens were conducted at various load ratios (R) such as 0.1, 0.3 and 0.5 in T6 and Thermomechanically treated (TMT) conditions of 7039 Al alloy. Better mechanical properties from monotonic test as well as fatigue crack propagation were obtained by TMT process owing to uniform distribution of fine microstructures and non-existence of precipitation free zone (PFZ). Through the measurement of Kop and ${\Delta}K$ at various R the concept of effective stress intensity factor range ratio, U was reviewed to asses the load ratio effect on fatigue crack propagation. A relationship between U and variables such as ${\Delta}K$ and R was obtained empirically. This may enable us to predict ${\Delta}K_{eff}$ that is of critical importance for prediction of fatigue crack propagation rate.

  • PDF

The effect of subzero treatment and gas nitration on SKD11 (SKD11합금의 심냉처리와 질화처리에 대한 영향)

  • 김정훈;김기선;김선화
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.83-86
    • /
    • 2003
  • SKD11은 자이로 펌프의 로타와 붓싱 재질로 사용되는데, 자이로펌프는 임펠러의 회전이 없고 원판의 기울기 운동으로 흡입과 토출을 반복하는 고압용적식 펌프이다. 이 펌프의 내구성을 향상시키기 위하여 우수한 내압성과 내마모성을 갖는 재질선정이 요구한다. 따라서 현재 가장 널리 사용되고있는 SKD11에 심냉처리를 통하여 미세조직의 개선을 수행하였고, 가스질화처리에 의한 표면경화로 내압성과 내마모성을 증가시키고자 하였다. SKD11의 미세조직 변화를 조사하기 위하여 광학현미경과 X-선 회절기를 사용하여 미세조직 관찰과 상변화를 조사하였으며, Rockwell 경도기틀 사용하여 각 변수에 따른 경도변화를 조사하였다. 연구 결과 기지조직은 모두 마르텐사이트로 나타났으며, 이 이외에 각각의 조건에 따라 크롬탄화물, PFZ, 잔류오스테나이트가 확인되었다. SKD11을 액화질소로 냉각한 후 500℃에서의 템퍼링으로 가장 큰 경도값을 얻을 수 있었다. 또한 가스질화처리에 의하여 표면경도를 크게 증가시킬 수 있었다.

  • PDF

γ'-Precipitation Free Zone and γ' Rafting Related to Surface Oxidation in Creep Condition of Directionally Solidified CM247LC Superalloy (일방향 응고 CM247LC 초내열합금의 크리프 조건에서 표면 산화와 연계된 γ'-석출 고갈 지역 및 γ' 조대화)

  • Byung Hak Choe;Kwang Soo Choi;Sung Hee Han;Dae Hyun Kim;Jong Kee Ahn;Dong Su Kang;Seong-Moon Seo
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.406-413
    • /
    • 2023
  • This study used optical and scanning electron microscopy to analyze the surface oxidation phenomenon that accompanies a γ'-precipitate free zone in a directional solidified CM247LC high temperature creep specimen. Surface oxidation occurs on nickel-based superalloy gas turbine blades due to high temperature during use. Among the superalloy components, Al and Cr are greatly affected by diffusion and movement, and Al is a major component of the surface oxidation products. This out-diffusion of Al was accompanied by γ' (Ni3Al) deficiency in the matrix, and formed a γ'-precipitate free zone at the boundary of the surface oxide layer. Among the components of CM247LC, Cr and Al related to surface oxidation consist of 8 % and 5.6 %, respectively. When Al, the main component of the γ' precipitation phase, diffused out to the surface, a high content of Cr was observed in these PFZs. This is because the PFZ is made of a high Cr γ phase. Surface oxidation of DS CM247LC was observed in high temperature creep specimens, and γ'-rafting occurred due to stress applied to the creep specimens. However, the stress states applied to the grip and gauge length of the creep specimen were different, and accordingly, different γ'-rafting patterns were observed. Such surface oxidation and PFZ and γ'-rafting are shown to affect CM247LC creep lifetime. Mapping the microstructure and composition of major components such as Al and Cr and their role in surface oxidation, revealed in this study, will be utilized in the development of alloys to improve creep life.