• Title/Summary/Keyword: PI-Phospholipase C

Search Result 32, Processing Time 0.027 seconds

Effect of Ginsenosides from Red Ginseng on the Enzymes of Cellular Signal Transduction System (홍삼 사포닌류(Ginsenosides)의 세포 신호 전달계 효소에 미치는 영향)

  • 임경택;최진성
    • Journal of Ginseng Research
    • /
    • v.21 no.1
    • /
    • pp.19-27
    • /
    • 1997
  • The present study was conducted to assess the effect of total saponins from Korean red ginseng on the biosynthesis of inositol phospholipids in vivo and also effects on the metabolic enzymes, such as phosphatidylinositol-specific phospholipase C(Pl-PLC) and PI-kinases. The administration of 0.1% saponin solution, 0.1 ml 3 times a day intraperitoneally to 5 mice for 30 days has increased a 23% of the body weight when it compared with a control group. The amounts of 32P-phoschorus radioactivity incorporated into the phosphoinositides from the liver and brain tissues have increased a 310% and 260%, respectively, in the saponin treated mice. The activities of PI-PLC from liver and brain were stimulated in the various amounts by the conditions treated with saponins. The PI-kinases from liver and brain were also activated by saponins, but its effect was lower than that of PI-PLC. From these results, it was confirmed that red ginseng saponins have affected positively not only on the biosynthesis of phosphoinositides but also on the PI-PLC and PI-kinases related to the cellular signal transduction.

  • PDF

Homogeneity of Phospholipase C of Bovine Uterus and Seminal Vesicle Compared with Brain Isozymes (소의 자궁 및 고환에서 Phospholipase C의 분리 및 뇌 Isozyme과의 비교 연구)

  • Kim, Jung-Hye;Rhee, Sue-Goo;Lee, Ki-Yung
    • Journal of Yeungnam Medical Science
    • /
    • v.5 no.2
    • /
    • pp.37-45
    • /
    • 1988
  • Phosphoinositide-specific phospholipase C(PI-PLC) is a second messenger of signal transducer on cell membrane. In the previous study, PLC of bovine brain has been purified three isozymes. In this paper, uterus and seminal vesicle have been purified. Two peaks of PI-PLC activity were resolved when bovine uterus and seminal vesicle proteins were chromatographed on a DEAE and phenyl TSK 5PW HPLC column. Each two peak was compared with PI-PLC I, IT and ill from bovine brain and we got the retension time on HPLC. The peak fractions with PLC activity were tested homogeneity with brain PLC monoclonal antibodies(Mab). Mab-labeled affigels were bounded in the range of 73.8%~97.5% with PLC I, IT and III. Homogeneity of fractions were revealed that DEAE F-1 and phenyl F-1-I were highest level of PLC III in uterus and seminal vesicle and DEAE F-2 and phenyl F-2-I were mixed PLC I and II.

  • PDF

Enhanced Coupling of $M_1$ Muscarinic Receptors to Activation of Phospholipase C upon Mutation of a Transposed Amino Acid Triplet Repeat

  • Lee, Seok-Yong;Sung, Ki-Wug;Kim, Ok-Nyu;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 1997
  • The C-terminus ends of the second putative transmembrane domains of both $M_1$ and $M_2$ muscarinic receptors contain a triplet of amino acid residues consisting of leucine (L), tyrosine (Y) and threonine (T). This triplet is repeated as LYT-TYL in $M_1$ receptors at the interface between the second transmembrane domain and the first extracellular loop. Interestingly, however, it is repeated in a transposedfashion (LYT-LYT) in the sequence of $M_2$ receptors. In our previous work, we investigated the possible significance of this unique sequence diversity for determining the distinct differential receptor function at the two receptor subtypes. However, we found mutation of the LYTTYL sequence of $M_1$ receptors to the corresponding $M_2$ receptor LYTLYT sequence demonstrated markedly enhanced the stimulation of phosphoinositide (PI) hydrolysis by carbachol without a change in its coupling to increased cyclic AMP formation. In this work, thus, the enhanced stimulation of PI hydrolysis in the LYTLYT $M_1$ receptor mutant was further investigated. The stimulation of PI hydrolysis by carbachol was enhanced in the mutant $M_1$ receptor, and this change was not due to alterations in the rate of receptor desensitization or sequestration. The observed larger response to carbachol at mutant $M_1$ receptors was also not due to an artifact resulting from selection of CHO cells which express higher levels of G-proteins or phospholipase C. Our data suggest that although the LYTTYL sequence in $M_1$ muscarinic receptors is not involved in determining receptor pharmacology, mutation of the sequence enhanced the coupling of $M_1$ receptors to the stimulation of phospholipase C.

  • PDF

The phosphoinositide-specific phospholipase C gene, MPLCl, of Magnaporthe grisea is required for fungal development and plant colonization

  • Park, Hee-Sool;Lee, Yong-Hwan
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.84.1-84
    • /
    • 2003
  • Magnaporthe grisea, the casual agent of rice blast, forms an appressorium to penetrate its host. Much has been learned about environmental cues and signal transduction pathways, especially those involving CAMP and MAP kinases, on appressorium formation during the last decade. More recently, pharmacological data suggest that calcium/calmodulin-dependent signaling system is involved in its appressorium formation. To determine the role of phosphoinositide-specific phospholipase C (PI-PLC) on appressorium formation, a gene (WPLCl) encoding PI-PLC was cloned and characterized from M. grisea strain 70-15. Sequence analysis showed that MPLCl has alt five conserved domains present in other phospholipase C genes from several filamentous fungi and mammals. Null mutants (mplcl) generated by targeted gene disruption exhibited pleiotropic effects on conidial morphology, appressorium formation, fertility and pathogenicity. mplcl mutants developed nonfunctional appressoria and are also defective in infectious growth in host tissues. Defects in appressorium formation and pathogenicity in mplcl mutants were complemented by a mouse PLCdelta-1 cDNA under the control of the MPLCl promoter. These results suggest that cellular signaling mediated by MPLCl plays crucial and diverse roles in development and pathogenicity of M. grisea, and functional conservation between fungal and mammalian Pl-PLCs.

  • PDF

Regulation properties of phospholipase C$\delta$ cloned from Misgurnus mizolepis

  • Kim, Na-Young;Ahn, Sang-Jung;Jeon, Soo-Jin;Seo, Jung-Soo;Kim, Moo-Sang;Lee, Sang-Hwan;Je, Ju-Eun;Sung, Ji-Hea;Lee, Hyung-Ho;Lee, June-Woo;Chung, Joon-Ki
    • Journal of fish pathology
    • /
    • v.20 no.2
    • /
    • pp.119-127
    • /
    • 2007
  • Phosphoinositide-specific phospholipase Cδ (PLCδ) plays an important role in many cellular responses and is involved in the production of second messenger. The present study was conducted to characterize the catalytic and regulatory properties of the PLCδ of Misgurnus mizolepis (ML-PLCδ). The ML-PLCδ gene was cloned and expressed under according to the method of the previous report (Kim et al., 2004), and its recombinant protein was purified by successive chromatography using Ni2+-NTA affinity column. The recombinant ML-PLCδ showed a concentration-dependent PLC activity to phosphatidylinositol 4,5-bisphosphate (PIP2) or phosphatidylinositol (PI). Its activity was absolutely Ca2+-dependence, which was similar to mammalian PLCδ isozymes. The Ca2+ concentration yielding maximal activation of ML-PLCδ was 100 μM. However, the activity was decreased interestingly by a polyamine, such as spermine and spermidine. In vitro assay using cholate-micelle cell, ML-PLCδ activity was inhibited in dose-dependent manner by sphinogosine but increased by phosphocholine . In the lipid-binding assay, ML-PLCδ was strongly bound to LPA, PI(3)P, PI(4)P, PI(5)P, PI(3,5)P2, PI(4,5)P2, PI(3,4,5)P3 and PA, but it showed the low affinity to S1P, PI(3,4)P2 and PS. Taken together our results, it is suggested that the general catalytic and regulatory properties of ML-PLCδ are similar with those of mammalian PLCδ1 isozymes, but the N-terminal extended piscine phospholipase Cδ1 (ML-PLCδ) might reflect some distinctions in regulatory properties and inositol-lipid binding specificity between piscine ML-PLCδ and mammalian PLCδ isozymes.

Involvement of Cytosolic Phospholipase $A_2$ in Nerve Growth Factor-Mediated Neurite Outgrowth of PC12 Cells

  • Choi, Soon-Wook;Yu, Eun-Ah;Lee, Young-Seek;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.525-530
    • /
    • 2000
  • The nerve growth factor (NGF) induces neuronal differentiation and neurite outgrowth of PC12 cells, whereas epidermal growth factors (EGF) stimulate growth and proliferation of the cells. In spite of this difference, NGF-or EGF-treated PC12 cells share various properties in cellular-signaling pathways. These include the activation of the phosphoinositide (PI)-3 kinase, 70 kDa S6 kinase, and in the mitogen-activated protein (MAP) kinase pathway, following the binding of these growth factors to intrinsic receptor tyrosine kinases (RTKs). Therefore, many studies have been attempted to access the critical signaling events in determining the differentiation and proliferation of PC12 cells. In this study, we investigated the cytosolic phospholipase $A_2$ ($cPLA_2$) in neurite behavior in order to identify the differences of signaling pathways between the NGF-induced differentiation and the EGF-induced proliferation of PC12 cells. We have showed here that the $cPLA_2$ was translocated from cytosol to membrane only in NGF-treated cells. We also demonstrated that this translocation is associated with NGF-induced activation of phospholipase $C-{\gamma}(PLC-{\gamma})$, which elevates intracellular $Ca^{2+}$ concentration. These results reveal that the translocation of $cPLA_2$ may be a requisite event in the neuronal differentiation of PC12 cells. Various phospholipase inhibitors were used to confirm the importance of these enzymes in the differentiation of PC12 cells. Neomycin B, a PLC inhibitor, dramatically inhibited the neurite outgrowth, and two distinct $PLA_2$ inhibitors, 4-bromophenacyl bromide (BPB) and arachidonyltrifluoro-methyl ketone ($AACOCF_3$) also suppressed the neurite outgrowth of the cells, as well Taken together, these data indicated that $cPLA_2$ is involved in NGF-induced neuronal differentiation and neurite outgrowth of PC12 cells.

  • PDF

Screening of the Extracts of Herbal Medicines which Stimulate the Hydrolysis of Phosphoinositides in Jurkat T-lymphocyte Cells (Jurkat T 면역세포에서 Phosphoinositides의 가수분해를 증가시키는 약용식물 추출물의 검색)

  • 민도식;이영한;백석환;서판길;류성호
    • Biomolecules & Therapeutics
    • /
    • v.4 no.2
    • /
    • pp.148-153
    • /
    • 1996
  • Activation of the T lymphocytes results in a variety of early biochemical events ultimately leading to cell proliferation and lymphokine production. Stimulation of the signal transduction cascade in T cells through the T cell receptor coincides with activation of the phosphatidylinositol-phospholipase C (PI-PLC) pathway. Therefore, we have established a model system to screen immune-simulator that can increase the hydrolysis of phosphoinositides in human T cell leukemia Jurkat cells. As a result of screening from herbal medicine extract, 4 extracts (O1ibanum, Ephedrae Herba, Real Gar, Saussureae Radix) were found 14 increase the production of inositol phosphates. All the active fraction from the four kinds of extract were fluted in a different retention time on C-18 HPLC and these active fraction also showed difference in cell specificity. And all the active fractions increased DNA synthesis in T cell. Therefore, it is suggested that the active fraction among 4 extracts might contain a compound having different properties one another.

  • PDF

Plant Inositol Signaling - Biochemical Study of Phospholipase C and D-myo-inositol -1,4,5-trisphosphate receptor

  • Martinec, Jan;Feltl, Tomas;Nokhrina, Katerina;Zazimalova, Eva;Machackova, Ivana
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.375-377
    • /
    • 2000
  • It is now generally accepted that a phosphoinositide cycle is involved in the transduction of a variety of signals in plant cells. In animal cells, the hydrolysis of phosphatidyl-4,5-bisphosphate catalysed by phosphatidylinositol - specific phospholipase C yields to D-myo-inositol - 1,4,5-trisphosphate and diacylglycerol, which are well known second messengers. The binding of InsP$_3$to a receptor located on the endoplasmic reticulum triggers a calcium release from the endoplasmic reticulum. We have detected and partially characterised key components of phosphoinositide signaling. First, tobacco microsomal fraction and plasma membrane PI-PLC. Consecutively, using a radioligand binding assay we have identified a $Ca^{2+}$ -dependent high affinity InsP$_3$binding site in microsomal membrane fraction vesicle preparation and then we have measured inositol-1,4,5-trisphosphate induced calcium release from tobacco microsomal fraction. These findings suggest that phosphoinositide signaling system is present and operates in the tobacco suspension culture.e.

  • PDF

Inhibition of the Activity of Phosphoinositide-Specific Phospholipase C Isozymes by Antipsychotics and Antidepressants

  • Joo, Yeon-Ho;Park, Eun-Sil;Park, Joo-Bae;Suh, Pann-Ghill;Kim, Yong-Sik;Ryu, Sung-Ho
    • Biomolecules & Therapeutics
    • /
    • v.1 no.1
    • /
    • pp.121-124
    • /
    • 1993
  • To elucidate the effect of antipsychotics and antidepressants on phosphoinositide(Pl) second massenger system, we studied the dose-dependent inhibition of the phosphoinositide-specific phospholipase C(PLC) isozymes, ${\beta}_1,\;{\gamma}_1$ and${\delta}_1,$ by fluphenazine and haloperidol as antipsychotics, and amitriptyline, maprotiline and mianserin as antidepressants. All the antipsychotics and antidepressants tested showed inhibition on at least one of the PLC isozymes with $IC_{50}$ at the concentration between 25 and $250 {\mu}M.$ Maprotiline, mianserin and amitriptyline inhibited 80 to 90% of the activities of all three PLC isozymes at the concentration of $250{\mu}M,$ while haloperidol and fluphenazine inhibited PLC ${\beta}_1$ and${\gamma}_1$ But baclofen didn't inhibit any PLC isozyme. These results suggested that PLC isozymes are inhibited by antipsychotics and antidepessants even though the concentration is high, and these drugs may affect PI signal transduction system by direct inhibition of PLC isozymes.

  • PDF

Identification of phospholipase Cβ downstream effect on transient receptor potential canonical 1/4, transient receptor potential canonical 1/5 channels

  • Ko, Juyeon;Myeong, Jongyun;Kwak, Misun;Jeon, Ju-Hong;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.357-366
    • /
    • 2019
  • $G{\alpha}_q$-coupled receptor stimulation was implied in the activation process of transient receptor potential canonical (TRPC)1/4 and TRPC1/5 heterotetrameric channels. The inactivation occurs due to phosphatidylinositol 4,5-biphosphate ($PI(4,5)P_2$) depletion. When $PI(4,5)P_2$ depletion was induced by muscarinic stimulation or inositol polyphosphate 5-phosphatase (Inp54p), however, the inactivation by muscarinic stimulation was greater compared to that by Inp54p. The aim of this study was to investigate the complete inactivation mechanism of the heteromeric channels upon $G{\alpha}_q$-phospholipase $C{\beta}$ ($G{\alpha}_q-PLC{\beta}$) activation. We evaluated the activity of heteromeric channels with electrophysiological recording in HEK293 cells expressing TRPC channels. TRPC1/4 and TRPC1/5 heteromers undergo further inhibition in $PLC{\beta}$ activation and calcium/protein kinase C (PKC) signaling. Nevertheless, the key factors differ. For TRPC1/4, the inactivation process was facilitated by $Ca^{2+}$ release from the endoplasmic reticulum, and for TRPC1/5, activation of PKC was concerned mostly. We conclude that the subsequent increase in cytoplasmic $Ca^{2+}$ due to $Ca^{2+}$ release from the endoplasmic reticulum and activation of PKC resulted in a second phase of channel inhibition following $PI(4,5)P_2$ depletion.