• Title/Summary/Keyword: PID-type fuzzy controller

Search Result 68, Processing Time 0.029 seconds

Fuzzy PID Controller Design for Tracking Control (퍼지PID제어를 이용한 추종 제어기 설계)

  • 김봉주;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.68-68
    • /
    • 2000
  • This paper presents a fuzzy modified PID controller that uses linear fuzzy inference method. In this structure, the proportional and derivative gains vary with the output of the system under control. 2-input PD type fuzzy controller is designed to obtain the varying gains. The proposed fuzzy PID structure maintains the same performance as the general-purpose linear PID controller, and enhances the tracking performance over a wide range of input. Numerical simulations and experimental results show the effectiveness of the fuzzy PID controller in comparison with the conventional PID controller.

  • PDF

Neural Network based Fuzzy Type PID Controller Design (신경 회로망 기반 퍼지형 PID 제어기 설계)

  • 임정흠;권정진;이창구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.86-86
    • /
    • 2000
  • This paper describes a neural network based fuzzy type PID control scheme. The PID controller is being widely used in industrial applications. however, it is difficult to determine the appropriate PID gains for (he nonlinear system control. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based fuzzy type PID controller whose scaling factors were adjusted automatically. The value of initial scaling factors of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods and then they were adjusted by using neural network control techniques. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The result of practical experiment on the magnetic levitation system, which is known to be hard nonlinear, showed the proposed controller's excellent performance.

  • PDF

Design of Parallel Type Fuzzy Controller Using Model Reference Fuzzy Algorithm (모델참조 퍼지 알고리즘을 이용한 병렬형 퍼지제어기 설계)

  • 추연규;김병철;이광석;김현덕
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.888-892
    • /
    • 2002
  • In this paper, parallel type fuzzy controller is designed by using a hybrid connected type fuzzy-PID controller and a model reference fuzzy controller. The first controller that consists a fuzzy-PI and a fuzzy-PD making a hybrid type fuzzy-PID controller plays a role as firstly reaching stable responses and secondly overcoming disturbance in plants. The second controller, model reference fuzzy controller, plays a role as reaching faster responses than other controllers. We have confirmed that we get rapid and stable responses and the controller overcomes disturbance in a short time when there happens disturbance by using parallel type fuzzy controller applying to DC motor in this paper.

  • PDF

Design of a PID type Fuzzy Controller

  • Jibril Jiya;Cheng Shao;Chai, Tian-You
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.189-193
    • /
    • 1998
  • A PID type fuzzy Controller is proposed based on a crisp type model in which the consequent parts of the fuzzy control rules are functional representation or real numbers. Using the conventional PID control theory, a new PID type fuzzy controller is developed, which retains the characteristics of the conventional PID controller. An advantage of this approach, is that it simplifies the complicated defuzzification algorithm which could be time consuming. Computer simulation results have shown that the proposed PID fuzzy controller has satisfactory tracking performance.

  • PDF

Design of Parallel Type Fuzzy Controller Using Model Reference Plant (플랜트 모델참조를 이용한 병렬형 퍼지제어기 설계)

  • 추연규
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.5
    • /
    • pp.379-383
    • /
    • 2003
  • Parallel type fuzzy controller is designed by using a hybrid connected type fuzzy-PID controller and a model reference fuzzy controller. The first controller, consists of a fuzzy-PI and a fuzzy-PD making a hybrid type fuzzy-PID controller, plays a role as firstly reaching stable responses and secondly overcoming disturbance in plants. The second controller, model reference fuzzy controller, plays a role as reaching faster responses than other controllers. We have confirmed that the controller produces rapid and stable responses and overcomes disturbance by using parallel type fuzzy controller in a DC motor application.

PID control and fuzzy control of hybrid magnetic levitation system (복합자석형 자기부상차량의 PID제어와 Fuzzy제어)

  • 권병일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.699-703
    • /
    • 1991
  • A magnetic levitation system with hybrid magnets, which is composed of permanent magnets and electromagnets, consumes less power than the conventional attraction type system. In this paper, we propose PID controller and PID-Fuzzy controller for hybrid magnet. We first present "constant gap" control technology with PID controller. Secondly, "zero power" control technology with PID-Fuzzy hybrid controller is presented.roller is presented.

  • PDF

Design of a Fuzzy P+ID controller for brushless DC motor speed control

  • Kim, Young-Sik;Kim, Sung-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.627-630
    • /
    • 2004
  • The PID type controller has been widely used in industrial application due to its simply control structure, ease of design, and inexpensive cost. However, control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. This paper presents a hybrid fuzzy logic proportional plus conventional integral derivative controller (fuzzy P+ID). In comparison with a conventional PID controller, only one additional parameter has to be adjusted to tune the fuzzy P+ID controller. In this case, the stability of a system remains unchanged after the PID controller is replaced by the fuzzy P+ID controller without modifying the original controller parameters. Finally, the proposed hybrid fuzzy P+ID controller is applied to BLDC motor drive. Simulation results demonstrated that the control performance of the proposed controller is better than that of the conventional controller.

  • PDF

A Study of Position Control Performance Enhancement in a Real-Time OS Based Laparoscopic Surgery Robot Using Intelligent Fuzzy PID Control Algorithm (Intelligent Fuzzy PID 제어 알고리즘을 이용한 실시간 OS 기반 복강경 수술 로봇의 위치 제어 성능 강화에 관한 연구)

  • Song, Seung-Joon;Park, Jun-Woo;Shin, Jung-Wook;Lee, Duck-Hee;Kim, Yun-Ho;Choi, Jae-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.518-526
    • /
    • 2008
  • The fuzzy self-tuning PID controller is a PID controller with a fuzzy logic mechanism for tuning its gains on-line. In this structure, the proportional, integral and derivative gains are tuned on-line with respect to the change of the output of system under control. This paper deals with two types of fuzzy self-tuning PID controllers, rule-based fuzzy PID controller and learning fuzzy PID controller. As a medical application of fuzzy PID controller, the proposed controllers were implemented and evaluated in a laparoscopic surgery robot system. The proposed fuzzy PID structures maintain similar performance as conventional PID controller, and enhance the position tracking performance over wide range of varying input. For precise approximation, the fuzzy PID controller was realized using the linear reasoning method, a type of product-sum-gravity method. The proposed controllers were compared with conventional PID controller without fuzzy gain tuning and was proved to have better performance in the experiment.

Design and Implementation of Fuzzy PID Controller (Fuzzy PID 제어기 설계 및 구현)

  • Shin Wee-Jae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.2
    • /
    • pp.89-94
    • /
    • 2005
  • In this paper, we propose a fuzzy PID controller of new method. There are two problems in absolute digital PID controller. First, much calculation time need for obtain the sum of data at each period. Second, this is problem need much memory because to storage every data at the before period. We use the speed type PID digital controller to improvement such problems. In the propose controller doesn't use without adjustment the crisp output error and we doesn't use nile tables in the fuzzy inference process at the forward stage fuzzifier. We inference output member ship function by using the relation and range of two variable of PID gain parameters. We can obtained desired results through the simulation and a experiment of the hydraulic servo motor control system.

  • PDF

Design of Fuzzy PID Controller for Tracking Control (퍼지 PID 제어를 이용한 추종 제어기 설계)

  • Kim, Bong--Joo;Chung, Chung-Chao
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.622-631
    • /
    • 2001
  • This paper presents a fuzzy modified PID controller that uses linear fuzzy inference method. In this structure, the proportional and derivative gains vary with the output of the system under control. 2-input PD type fuzzy controller is designed to obtain the varying gains. The proposed fuzzy PID structure maintains the same performance as the same performance as the general-purpose linear PID controller, and enhances the tracking performance over a wide range of input. Numerical simulations and experimental results show the effectiveness of the fuzzy PID controller in comparison with the conventional PID controller.

  • PDF