• Title/Summary/Keyword: PIS Potential

Search Result 5, Processing Time 0.024 seconds

Determination of the pH of Iso-Selectivity of the Interfacial Diffusion Layer of Fe

  • Ha, Heon Young;Kwon, Hyuk Sang
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.40-44
    • /
    • 2008
  • Passive metal forms an interfacial diffuse layer on the surface of passive film by its reaction with $H^+$ or $OH^-$ ions in solution depending on solution pH. There is a critical pH, called pH point of iso-selectivity ($pH_{pis}$) at which the nature of the diffuse layer is changed from the anion-permeable at pH<$pH_{pis}$ to the cation-permeable at pH>$pH_{pis}$. The $pH_{pis}$ for a passivated Fe was determined by examining the effects of pH on the thickness of passive film and on the dissolution reaction occurring on the passive film under a gavanostatic reduction in borate-phosphate buffer solutions at various pH of 7~11. The steady-state thickness of passive film formed on Fe showed the maximum at pH 8.5~9, and further the nature of film dissolution reaction was changed from a reaction producing $Fe^{3+}$ ion at $pH\leq8.5$ to that producing $FeO_2{^-}$ at $pH\geq9$, suggesting that the $pH_{pis}$ of Fe is about pH 8.5~9. In addition, the passive film formed at pH 8.5~9, $pH_{pis}$, was found to be the most protective with the lowest defect density as confirmed by the Mott-Schottky analysis. Pitting potential was decreased with increasing $Cl^-$ concentration at $pH\leq8.5$ due probably to the formation of anion permeable diffuse layer, but it was almost constant at $pH\geq9$ irrespective of $Cl^-$ concentration due primarily to the formation of cation permeable diffuse layer on the film, confirming again that $pH_{pis}$ of Fe is 8.5~9.

The Development of Buried Type Reference Electrode Using Porous Ceramic(${\alpha}-Al_{2}O_{3}$) (다공성 세라믹(${\alpha}-Al_{2}O_{3}$)를 이용한 지중 매설형 기준전극)

  • Bae, Jeong-Hyo;Ha, Yoon-Cheol;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.145-147
    • /
    • 2005
  • In present, most of metallic structures(gas pipeline, oil pipeline, water pipeline, etc) are running parallel with subway and power line in seoul. Moreover subway system and power line make a stray current due to electrical corrosion on metallic structures. The owner of metallic structures has a burden of responsibility for the protection of corrosion and the prevention against big accident such as gas explosion or soil pollution and so on. So, they have to measure and analyze the data about P/S(Pipe to Soil) potential due to stray current of subway system. So, we have developed the Real-time Wireless Remote Monitoring System for Stray Current of Subway System. In this system, the permanent buried type reference electrode is necessary. In this paper, results of development of buried type reference electrode using porous ceramic$({\alpha}-Al_{2}O_{3})$ are presented.

  • PDF

A multilevel in space and energy solver for multigroup diffusion eigenvalue problems

  • Yee, Ben C.;Kochunas, Brendan;Larsen, Edward W.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1125-1134
    • /
    • 2017
  • In this paper, we present a new multilevel in space and energy diffusion (MSED) method for solving multigroup diffusion eigenvalue problems. The MSED method can be described as a PI scheme with three additional features: (1) a grey (one-group) diffusion equation used to efficiently converge the fission source and eigenvalue, (2) a space-dependent Wielandt shift technique used to reduce the number of PIs required, and (3) a multigrid-in-space linear solver for the linear solves required by each PI step. In MSED, the convergence of the solution of the multigroup diffusion eigenvalue problem is accelerated by performing work on lower-order equations with only one group and/or coarser spatial grids. Results from several Fourier analyses and a one-dimensional test code are provided to verify the efficiency of the MSED method and to justify the incorporation of the grey diffusion equation and the multigrid linear solver. These results highlight the potential efficiency of the MSED method as a solver for multidimensional multigroup diffusion eigenvalue problems, and they serve as a proof of principle for future work. Our ultimate goal is to implement the MSED method as an efficient solver for the two-dimensional/three-dimensional coarse mesh finite difference diffusion system in the Michigan parallel characteristics transport code. The work in this paper represents a necessary step towards that goal.

Ion beam irradiation for surface modification of alignment layers in liquid crystal displays (액정 디스플레이 배향막을 위한 이온빔 표면조사에 관한 연구)

  • Oh, Byeong-Yun;Kim, Byoung-Yong;Lee, Kang-Min;Kim, Young-Hwan;Han, Jeong-Min;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.41-41
    • /
    • 2008
  • In general, polyimides (PIs) are used in alignment layers in liquid crystal displays (LCDs). The rubbing alignment technique has been widely used to align the LC molecules on the PI layer. Although this method is suitable for mass production of LCDs because of its simple process and high productivity, it has certain limitations. A rubbed PI surface includes debris left by the cloth, and the generation of electrostatic charges during the rubbing induces local defects, streaks, and a grating-like wavy surface due to nonuniform microgrooves that degrade the display resolution of computer displays and digital television. Additional washing and drying to remove the debris, and overwriting for multi-domain formation to improve the electro-optical characteristics such as the wide viewing angle, reduce the cost-effectiveness of the process. Therefore, an alternative to non-rubbing techniques without changing the LC alignment layer (i.e, PI) is proposed. The surface of LC alignment layers as a function of the ion beam (IE) energy was modified. Various pretilt angles were created on the IB-irradiated PI surfaces. After IB irradiation, the Ar ions did not change the morphology of the PI surface, indicating that the pretilt angle was not due to microgrooves. To verify the compositional behavior for the LC alignment, the chemical bonding states of the ill-irradiated PI surfaces were analyzed in detail by XPS. The chemical structure analysis showed that ability of LCs to align was due to the preferential orientation of the carbon network, which was caused by the breaking of C=O double bonds in the imide ring, parallel to the incident 18 direction. The potential of non-rubbing technology for fabricating display devices was further conformed by achieving the superior electro-optical characteristics, compared to rubbed PI.

  • PDF

Residual Stress Behavior and Characterization of Polyimide Crosslinked Networks via Ring-opening Metathesis Polymerization (개환 복분해 중합을 통한 가교형 폴리이미드 박막의 잔류응력 거동 및 특성 분석)

  • Nam, Ki-Ho;Seo, Jongchul;Jang, Wonbong;Han, Haksoo
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.752-759
    • /
    • 2014
  • Crosslinked polyimides (PIs) were synthesized by reacting 4,4'-(hexafluoroisopropylidene)-diphthalic anhydride (6FDA) and 2,2'-bis(trifluoromethyl)benzidine (TFDB) with various ratios of the cross-linkable, end-capping agent cis-1,2,3,6-tetrahydrophthalic anhydride (CDBA) via ring-opening metathesis polymerization. Residual stress behaviors were investigated in-situ during thermal imidization of the crosslinked PI precursors using a thin film stress analyzer (TFSA) by wafer bending method. The thermal properties were investigated via differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and thermogravimetric analysis (TGA). The optical properties were measured by ultraviolet-visible spectrophotometer (UV-vis) and spectrophotometry. All properties were interpreted with respect to their morphology of crosslinked networks. With increasing the amounts of the end-capping agent, the residual stress decreased from 27.9 to -1.3 MPa, exhibited ultra-low stress and high thermal properties. The minimized residual stress and enhanced thermal properties of the crosslinked PI makes them potential candidates for versatile high-density multi-layer structure applications.