• Title/Summary/Keyword: PMSM Drive

Search Result 193, Processing Time 0.02 seconds

Maximum Torque Control of PMSM Drive in Field weakening Region (약계자 영역에서 PMSM 드라이브의 최대 토크제어)

  • 이홍균;이정철;김종관;정동화
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • Permanent magnet synchronous motor(PMSM) is widely used in many applications such as an electric vehicle. compressor drives of air conditioner and machine tool spindle drives. PMSM drive system have become a popular choice in various application, due to their excellent power to weight ratio. This paper is proposed maximum torque control for field weakening operation of PMSM drive. At low speeds, the reluctance torque is used to maximize the output for a given current level. This is achieved maximum torque per ampere(MTPA) by selecting an optimal value of the direct stator current component. At high speeds, the system reaches a point at which the inverter will not be able to supply the desired voltage. In this case it is necessary to make use of an increased value the direct current component. The proposed control algorithm is applied to PMSM drive system, the operating characteristics controlled by maximum torque control are examined in detail by simulation.

DC link voltage control method in the sinusoidal current drive system for dental hand-piece PMSM (치과 핸드피스용 고속 PMSM의 정현파 구동을 위한 인버터 직류 링크전압 제어기법)

  • Jeon, Geum-Sang;Park, Jae-Seung;Park, Sang-Uk;Kim, Sang-Hee;Ahn, Hee-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.16-21
    • /
    • 2013
  • This paper presents a DC link voltage control method to reduce the ripple current and the switching loss in the sinusoidal current drive system for the wide-speed range PMSM. The DC link voltage of the three phase inverter in the sinusoidal current drive system is designed by the back-EMF voltage at maximum speed of the PMSM. In general, the drive systems have used the constant DC link voltage without reference to the motor speed. The current ripple causes hysteresis loss and makes noise. In addition, the switching loss on the inverter increases in proportion to the rise in the DC link voltage. In this paper, we propose the variable DC link voltage control method to reduce the current ripple in the PMSM drive system. We show reduction effect of the current repple and the switching loss through simulation results.

Robust Speed Control of Vector Controlled PMSM with Load Torque Observer (부하토오크 관측기를 이용한 영구자석 동기전동기의 강인성 속도 제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Won-Oh;Yoon, Myung-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.559-563
    • /
    • 1991
  • Permanent magnet synchronous motor (PMSM) is receiving increased attention for servo drive applications in recent years because of its high torque to inertia ratio, superior power density and high efficiency. Vector-controlled PMSM has the same operating characteristics as separately excited dc motor. The drive system of servo motor is requested to have an accurate response for the speed reference and a quick recovery for the disturbance such as load torque. However the dynamics of PMSM drive change greately by parameter variations. Morever, when the unkown and inaccessible disturbances are imposed on PMSM, the drive system is given a significant effect by them. As a result, the drive system with both a fast drive performance and a reduced sensitivity to parameter variations is requested. In this paper, the robust control system of PMSM with torque feedforward using load torque observer is presented. In the proposed system, load torque is estimated by the reduced order observer, and the robust control system against load torque variation is realized using the torque feedforward. Moreover, the design of speed controller with the torque observer is discussed. Simulation results show that the proposed method is effective for suppression of parameter variations and load disturbance.

  • PDF

Model-free Deadbeat Predictive Current Control of a Surface-mounted Permanent Magnet Synchronous Motor Drive System

  • Zhou, Yanan;Li, Hongmei;Zhang, Hengguo
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.103-115
    • /
    • 2018
  • Parametric uncertainties and inverter nonlinearity exist in the permanent magnet synchronous motor (PMSM) drive system of electrical vehicles, which may lead to performance degradation or failure, and eventually threaten reliable operation. Therefore, a model-free deadbeat predictive current controller (MFDPCC) for PMSM drive systems is proposed in this study. The data-driven ultra-local model of a surface-mounted PMSM (SMPMSM) drive system that consists of parametric uncertainties and inverter nonlinearity is first established through the input and output data of a SMPMSM drive system. Subsequently, MFDPCC is designed. The performance comparisons and analyses of the proposed MFDPCC, the conventional proportional-integral controller, and the model-based deadbeat predictive current controller for SMPMSM drive systems are implemented via system simulation and experimental tests. Results show the effectiveness and technical advantages of the proposed MFDPCC.

A Vector-Controlled PMSM Drive with a Continually On-Line Learning Hybrid Neural-Network Model-Following Speed Controller

  • EI-Sousy Fayez F. M.
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.129-141
    • /
    • 2005
  • A high-performance robust hybrid speed controller for a permanent-magnet synchronous motor (PMSM) drive with an on-line trained neural-network model-following controller (NNMFC) is proposed. The robust hybrid controller is a two-degrees-of-freedom (2DOF) integral plus proportional & rate feedback (I-PD) with neural-network model-following (NNMF) speed controller (2DOF I-PD NNMFC). The robust controller combines the merits of the 2DOF I-PD controller and the NNMF controller to regulate the speed of a PMSM drive. First, a systematic mathematical procedure is derived to calculate the parameters of the synchronous d-q axes PI current controllers and the 2DOF I-PD speed controller according to the required specifications for the PMSM drive system. Then, the resulting closed loop transfer function of the PMSM drive system including the current control loop is used as the reference model. In addition to the 200F I-PD controller, a neural-network model-following controller whose weights are trained on-line is designed to realize high dynamic performance in disturbance rejection and tracking characteristics. According to the model-following error between the outputs of the reference model and the PMSM drive system, the NNMFC generates an adaptive control signal which is added to the 2DOF I-PD speed controller output to attain robust model-following characteristics under different operating conditions regardless of parameter variations and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed 200F I-PD NNMF controller. The results confirm that the proposed 2DOF I-PO NNMF speed controller produces rapid, robust performance and accurate response to the reference model regardless of load disturbances or PMSM parameter variations.

Direct Torque Control of Five-leg Dual-PMSM Drive Systems for Fault-tolerant Purposes

  • Wang, Wei;Zhang, Jinghao;Cheng, Ming;Cao, Ruiwu
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.161-171
    • /
    • 2017
  • To enhance the reliability of two-motor drive systems, this paper proposes an improved direct torque control (DTC) scheme (P-DTC) for five-leg dual-PMSM drive systems. First, the topology of a five-leg dual-PMSM drive system is illustrated. To clarify the analysis of the P-DTC, the standard DTC scheme for three-phase drive systems is presented. The operation of a five-leg dual-PMSM drive system is classified into three situations according to the definitions of the switching-vector unions. Compared with the existing DTC scheme (R-DTC), the P-DTC can minimize the replacement of active switching-vectors to zero switching-vectors. When this replacement cannot be avoided, the P-DTC uses a proposed master-slave selection principle to minimize the system error. Comparing with the R-DTC, the P-DTC has lower torque ripples, a wider speed range and a faster torque increasing response. Experiments have been carried out in the coupling and independent modes, and the effectiveness of the P-DTC is verified by the obtained results.

Development of rapid control prototyping for a PMSM drive system using DSPs and PLECS (DSP 및 PLECS를 활용한 PMSM 구동시스템용 고속 제어 시제품개발 기법 개발)

  • Lee, Jooyoung;Choi, Sung-Min;Kim, Sehwan;Lee, Jae Suk
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.280-286
    • /
    • 2022
  • This paper presents implementation of rapid control prototype (RCP) for permanent magnet synchronous machines (PMSMs) using a digital signal processor (DSP) and the PLECS software. By utilization of auto code generation function in the PLECS, a current vector control algorithm for a PMSM drive system using a DSP as a control processor can be developed more efficiently. In this paper, a background of a model based design (MBD) and real time control are reviewed. Also, commercial RCP products compatible with DSP boards are introduced. At the end of the paper, experimental implementation of RCP for a PMSM drive is presented.

Design and Control Methods of Bidirectional DC-DC Converter for the Optimal DC-Link Voltage of PMSM Drive

  • Kim, Tae-Hoon;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1944-1953
    • /
    • 2014
  • This paper shows the design and control methods of the bidirectional DC-DC converter to generate the proper DC-link voltage of a PMSM drive. Conventionally, because the controllable power of the PWM based voltage source inverter is limited by its DC-link voltage, the DC-DC converter is used for boosted DC-link voltage if the inverter source cannot generate enough operating voltage for the PMSM drive. In this paper, to obtain more utilization of this DC-DC converter, optimal DC-link voltage control for PMSM drive will be explained. First, the process and current path of the DC-DC converter will be illustrated, and a control method of this converter for variable DC-link voltage will then be explained. Finally, an improvement analysis of the optimal DC-link voltage control method, especially on the deadtime effect, will be explained. The DC-DC converter of the proposed control method is verified by the experiments by comparing with the conventional constant voltage control method.

Three Phase Drive Transfer Algorithm for Fault Tolerance Control of Six-Phase PMSM (6상 영구자석 동기전동기의 고장대응운전을 위한 3상 구동시스템 전환 알고리즘)

  • Kim, Seong-Hoon;Jang, Won-Jin;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.256-262
    • /
    • 2021
  • Six-phase motors can be used in industrial applications, such as an electric vehicle, due to their high reliability and low current magnitude per phase. An asymmetrical PMSM with two sets of three-phase windings is a commonly used structure for six-phase motors, with each winding set demonstrating a phase difference of 30°. Although the asymmetrical PMSM presents low torque ripples, its dynamic torque response deteriorates due to coupled components in the two three-phase windings. The decoupled VSD control is applied to eliminate the coupling effect. Load ratio control of two inverters for the six-phase PMSM is proposed in this study. DQ currents are controlled on the basis of two synchronous reference frames, and the six-phase drive system can be changed to a three-phase drive system when one inverter presents fault conditions. The operation and effectiveness of the proposed algorithm is verified through simulation and experiments. The six-phase drive system is transferred to a three-phase drive system by changing the current reference of the second DQ reference frame. Moreover, control of both torque and speed exhibits satisfactory performance before and after the mode change.

Adaptive Fuzzy Control for High Performance PMSM Drive (고성능 PMSM 드라이브를 위한 적응 퍼지제어기)

  • Chung, Dong-Hwa;Lee, Jung-Chul;Lee , Hong-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.12
    • /
    • pp.535-541
    • /
    • 2002
  • This paper proposes an adaptive fuzzy controller based fuzzy logic control for high performance of permanent magnet synchronous motor(PMSM) drive. In the proposed system, fuzzy control is sued to implement the direct controller as well as the adaptation mechanism. The adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of adaptive fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed controller is confirmed by performance results for PMSM drive system.