• Title/Summary/Keyword: POME treatment

Search Result 8, Processing Time 0.022 seconds

Optimization of POME treatment process using microalgae and ultrafiltration

  • Ibrahim, R.I.;Mohammad, A.W.;Wong, Z.H.
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.293-308
    • /
    • 2015
  • Palm oil mill effluent (POME) was produced in huge amounts in Malaysia, and if it discharged into the environment, it causes a serious problem regarding its high content of nutrients and high levels of COD and BOD concentrations. This study was devoted on POME treatment and purification using an integrated process consisting of microalgae treatment followed by membrane filtration. The main objective was to find the optimum conditions as retention time and pH in the biological treatment of POME. Since after the optimum conditions there is a diverse effect of time and the process become costly. According to our knowledge, there is no existing study optimized the retention time and percentage removal of nutrients for microalgae treatment of POME wastewater. In order to achieve with optimization, a second order polynomial model regression coefficients and goodness of fit results in removal percentages of ammonia nitrogen ($NH_3-N$), orthophosphorous ($PO_4{^{-3}}$), COD, TSS, and turbidity were estimated. WinQSB technique was used to optimize the objective function of the developed model, and the optimum conditions were found. Also, ultrafiltration membrane is useful for purification of POME samples as verified by experiments.

Fouling behaviours of two stages microalgae/membrane filtration system applied to palm oil mill effluent treatment

  • Teow, Yeit Haan;Wong, Zhong Huo;Takriff, Mohd Sobri;Mohammad, Abdul Wahab
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.373-383
    • /
    • 2018
  • Fouling by solids and microorganisms is the major obstacle limiting the efficient use of membrane wastewater treatment. In our previous study, two stages microalgae/membrane filtration system was proposed to treat anaerobic digested palm oil mill effluent (AnPOME). This two stages microalgae/membrane filtration system had showed great potential for the treatment of AnPOME with high removal of COD, $NH_3-N$, $PO_4{^{3-}}$, TSS, turbidity, and colour. However, fouling behavior of the membrane in this two stages microalgae/membrane filtration system was still unknown. In this study, empirical models that describe permeate flux decline for dead-end filtration (pore blocking - complete, intermediate, and standard; and cake layer formation) presented by Hermia were used to fit the experimental results in identifying the fouling mechanism under different experimental conditions. Both centrifuged and non-centrifuged samples were taken from the medium with 3 days RT intervals, from day 0 to day 12 to study their influence on fouling mechanisms described by Hermia for ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) filtration mode. Besides, a more detailed study on the use of resistance-in-series model for deadend filtration was done to investigate the fouling mechanisms involved in membrane filtration of AnPOME collected after microalgae treatment. The results showed that fouling of UF and NF membrane was mainly caused by cake layer formation and it was also supported by the analysis for resistance-in-series model. Whereas, fouling of RO membrane was dominated by concentration polarization.

Thermo-responsive antifouling study of commercial PolyCera® membranes for POME treatment

  • Haan, Teow Yeit;Chean, Loh Wei;Mohammad, Abdul Wahab
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.97-109
    • /
    • 2020
  • Membrane fouling is the main drawback of membrane technology. Frequent membrane cleaning and membrane replacement are, therefore, required to reduce membrane fouling that causes permeate flux reduction, lower rejection, or higher operating pressure. Studies have proved that the alteration of membrane properties is the key controlling factor in lessening membrane fouling. Among stimuli-responsive membranes, thermo-responsive membrane is the most popular, with a drastic phase transition and swelling-shrinking behavior caused by the temperature change. In this study, the thermo-responsive ability of two commercial membranes, PolyCera® Titan membrane and PolyCera® Hydro membrane, at different temperatures was studied on the antifouling function of the membrane in palm oil mill effluent (POME) treatment. The evaluation of the membrane's thermo-responsive ability was done through three cycles of adsorption (fouling) and desorption (defouling) processes in a membrane filtration process. The experimental result depicted that PolyCera® Hydro membrane had a higher membrane permeability of 67.869 L/㎡.h.bar than PolyCera® Titan membrane at 46.011 L/㎡.h.bar. However, the high membrane permeability of PolyCera® Hydro membrane was compensated with low removal efficiency. PolyCera® Titan membrane with a smaller mean pore size had better rejection performance than PolyCera® Hydro membrane for all tested parameters. On the other hand, PolyCera® Titan membrane had a better hydrodynamic cleaning efficiency than PolyCera® Hydro membrane regardless of the hydrodynamic cleaning temperature. The best hydrodynamic cleaning performed by PolyCera® Titan membrane was at 35℃ with the flux recovery ratio (FRR) of 99.17 ± 1.43%. The excellent thermo-responsive properties of the PolyCera® Titan membrane could eventually reduce the frequency of membrane replacement and lessen the use of chemicals for membrane cleaning. This outstanding exploration helps to provide a solution to the chemical industry and membrane technology bottleneck, which is the membrane fouling, thus reducing the operating cost incurred by the membrane fouling.

A study of palm oil mill processing and environmental assessment of palm oil mill effluent treatment

  • Akhbari, Azam;Kutty, Prashad Kumaran;Chuen, Onn Chiu;Ibrahim, Shaliza
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.212-221
    • /
    • 2020
  • This work discusses the palm oil mill processing carried out at Jugra Palm Oil Mill Sdn Bhd, situated at Selangor, Malaysia with the capacity of 45-t fresh fruit bunch (FFB)/h. Typically, oil palm residues and palm oil mill effluent (POME) from FFB are generated while processing. Prior to discharge, POME should be treated to remove pollutants in the effluent. As such, the performances of anaerobic and aerobic ponds were assessed in this study to determine temperature, pH, biological oxygen demand (BOD), sludge volume index (SVI), and dissolved oxygen (DO). From the experiments, mesophilic temperature due to better process stability was applied in anaerobic ponds. The pH results displayed a fluctuating trend between lower control limit and upper control limit, and, the pH value increased from one pond to another. The final discharge BOD and SVI appeared to be lower than 100 mg/L and 10 mL/L indicating low degree of pollution and good settling ability for biomass/solid. DO was close to normal, mostly below 2 mg/L. The experimental outcomes revealed the effective treatability of POME in adherence to the standard regulation, which is the priority for environmental sustainability within this industry domain.

Ultrafiltration of palm oil mill effluent: Effects of operational pressure and stirring speed on performance and membranes fouling

  • Yunos, Khairul Faezah Md;Mazlan, Nurul Ain;Naim, Mohd Nazli Mohd;Baharuddin, Azhari Samsu;Hassan, Abdul Rahman
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.263-270
    • /
    • 2019
  • Palm oil mill effluent (POME) is the largest pollutant discharged into the rivers of Malaysia. Thus UF membrane study was conducted to investigate the effect of pressure and stirring speed on performance of POME treatment and fouling of membrane. Two types of membrane polyethersulfone (PES) and regenerated cellulose (RC) with molecular weight cut-off (MWCO) 5 and 10 kDa were used in this study. Results showed that, as pressure increased, fouling increased however permeate quality improved, the best pressure was 1.0 bar, where the fouling was not too high and produce good permeate quality. As stirring speed increased, fouling reduced and permeate quality improved, however, when stirring speed increased from 600 rpm to 800 rpm, there was no significant improvement on the permeate quality. Therefore, the best condition was at 1.0 bar and 600 rpm. PES membrane with MWCO 5 kDa showed the best permeate quality, even fouling slightly higher than RC membrane. The permeate quality obtained were analyzed in term of dissolved solid, turbidity, suspended solid, biological oxygen demand ($BOD_5$) and chemical oxygen demand (COD) were 538 mg/L, 1.02 NTU, < 25 mg/L, 27.7 mg/L and 62.8 mg/L, respectively with dominant type of fouling is cake resistance. Thus, it can be concluded water reuse standard was successfully achieved in terms of $BOD_5$ and suspended solid.

Effect of Organic Loading Rate on the Performance of Anaerobic Hybrid Reactor (유기물 부하가 Anaerobic Hybrid Reactor 운전효율에 미치는 영향)

  • Shin, Chang-Ha;Oh, Dae-Yang;Kim, Tae-Hoon;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.4
    • /
    • pp.497-502
    • /
    • 2012
  • Anaerobic Digestion Process is evaluated as efficient wastewater treatment process with the removal of high concentrations of organic waste and production of biogas. This study was performed using hybrid anaerobic hybrid reactor (AHR) which consists of anaerobic sludge blanket (UASB) and biofilm-coated filter media was applied for Palm Oil Mill Effluent (POME) for 80 days to know optimum removal efficiency and production of biogas by comparing each part which divided changing Organic Loading Rate (OLR). As a result of this study, the removal efficiency was 90.4 % when the organic loading rate of influent was 15 kg COD/$m^3$/day. Since organic loading rate was up to 20 kg COD/$m^3$/day, the removal rate declined 80.7%. Over loading of influent caused sludge expansion and overproduction of microorganism. Amount of biogas was collected 82.3 L/day and pH was remained 6.9 constantly with balance of alkalinity.

Chemical cleaning of fouled polyethersulphone membranes during ultrafiltration of palm oil mill effluent

  • Said, Muhammad;Mohammad, Abdul Wahab;Nor, Mohd Tusirin Mohd;Abdullah, Siti Rozaimah Sheikh;Hasan, Hassimi Abu
    • Membrane and Water Treatment
    • /
    • v.5 no.3
    • /
    • pp.207-219
    • /
    • 2014
  • Fouling is one of the critical factors associated with the application of membrane technology in treating palm oil mill effluent (POME), due to the presence of high concentration of solid organic matter, oil, and grease. In order to overcome this, chemical cleaning is needed to enhance the effectiveness of membranes for filtration. The potential use of sodium hydroxide (NaOH), sodium chloride (NaCl), hydrochloric acid (HCl), ethylenediaminetetraacetic acid (EDTA), and ultrapure water (UPW) as cleaning agents have been investigated in this study. It was found that sodium hydroxide is the most powerful cleaning agent, the optimum conditions that apply are as follows: 3% for the concentration of NaOH, $45^{\circ}C$ for temperature solution, 5 bar operating pressure, and solution pH 11.64. Overall, flux recovery reached 99.5%. SEM images demonstrated that the membrane surface after cleaning demonstrated similar performance to fresh membranes. This is indicative of the fact that NaOH solution is capable of removing almost all of the foulants from PES membranes.

Treatment of palm oil mill effluent using 2 stage reactors combined anaerobic hybrid reactor and anaerobic attached growth reactor (혼합공정과 부착성장공정을 조합한 2단계 혐기 조합공정에서 palm oil mill effluent의 처리)

  • Shin, Chang-Ha;Son, Sung-Min;Jeong, Joo-Young;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.21-29
    • /
    • 2013
  • Present study was conducted to evaluate the performance of Anaerobic Hybrid Reactor (AHR) combined with two types of anaerobic attached growth reactors at mesophilic temperature ($37^{\circ}C$). The reactor was operated at the influent substrate condition of 19,400 mg/L soluble chemical oxygen demand (sCOD). The organic loading rate (OLR) and flow rate were varied in the range of $9.5{\sim}22.5kg/m^3$. day and 10.6 ~ 26.0 L/day respectively since start-up was done. The COD removal efficiency of 93 % was measured at the OLR of $14kg/m^3$. day in AHR. However a reduction in removal efficiency to as low as 85 % could have been related to a combined effect of high concentration suspended solids (SS) concentration over 3,800 mg/L. On the other hand the total COD removal efficiencies were measured to be 96.3 % and 96.2 % for AHR+APF and AHR+ADF respectively. The pH of the POME was adjusted to neutral range by using sodium bicarbonate at the initial stages of the reactor feed, later stages pH adjustment was not required as the pH was maintained in the desired neutral range due to self-buffering capacity of the reactor. The reactor proved to be economically acceptable and operationally stable. The biogas was measured to have $CH_4$ and $CO_2$ with a ratio of 35:65, and methane gas production rate was estimated to be $0.17{\sim}10.269L\;CH_4/g\;COD_{removed}$.