• Title/Summary/Keyword: PP fiber

Search Result 346, Processing Time 0.022 seconds

A Study on Polypropylene and Surface Modified PET Fiber Composites (표면처리된 PET 섬유와 PP 복합재료에 관한 연구)

  • Hahm, Moon-Seok;Kim, Chang-Hyeon;Ryu, Ju-Whan
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • We confirmed that poly (ethylene terephthalate) (PET) fiber had the possibility to improve the mechanical properties of polypropylene (PP) by fabricating PP/PET fiber composites because PET enhanced mechanical properties and higher melting temperature than PP. But lower compatibility of between PP and PET fibers induced poor mechanical properties of PP/PET fiber composites in spite of incorporating PP-g-MAH as compatibilizer. To solve these problems of PP/PET fiber composites, we carried out a surface treatment on PET fiber using NaOH solution and Prepared PP/PET fiber composites with good mechanical properties by adding PP-g-MAH as a compatibilizer Then the behavior of the mechanical properties was correlated with the results obtained from SEM and IR spectroscopy.

Effect of Ar+ Ion Irradiation of Polymeric Fiber on Interface and Mechanical Properties of Cementitious Composites

  • Seong, Jin-Wook;Lee, Seung-Hun;Kim, Ki-Hwan;Beag, Young-Whoan;Koh, Seok-Keun;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.430-434
    • /
    • 2004
  • The values of fracture energy and mechanical flexural strength of Fiber Reinforced Cement (FRC) with polypropylene (PP) fiber modified by Ion Assisted Reaction (JAR), by which functional groups were grafted on the surface of PP fiber, was improved about 2 times as those of fracture energy and flexural strength of cement reinforced by untreated PP fiber. PP fiber was irradiated in O$_2$ environment by Ar$\^$+/ ion. The contact angle of PP treated by IAR decreased largely when compared with untreated PP. From this result, we expected that surface energy and interfacial adhesion force of treated PP fiber increased. The strain hardening occurred in the strain-stress curve of FRC including PP treated by IAR when compared with that of FRC with untreated PP. These enhanced mechanical properties might be due to strong interaction between hydrophilic group on modified PP fiber and hydroxyl group in cement matrix. This hydrophilic group on surface modified PP fiber was confirmed by XPS analysis. We clearly observed hydration products that were fixed at modified PP fiber due to the strong adhesion force of interface in cement reinforced modified PP by SEM (Scanning Electron Microscopy) study.

Physical and Mechanical Properties of Blast Furnace Cement Concrete with Polypropylene Fiber (폴리프로필렌 섬유를 보강한 고로시멘트 콘크리트의 물리·역학적 특성)

  • Jun, Hyung Soon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.151-158
    • /
    • 2012
  • This study will not only prove experimental dynamic properties which are classified to slump, compressed strength, bending strength and toughness index blast-furnace cement concrete with polypropylene (PP) fiber that refer properties and volume of it, but also establish a basic data in order to use PP fiber reinforced blast-furnace cement concrete. The slump didn't changed by PP fiber volume $5kgf/m^3$ because of flexibility of fiber in despite of loose mixing. The reason why the slump decreased steadily by PP fiber volume $3kgf/m^3$ was rising contact surface of water. The compressed strength indicated a range of 19.49~26.32 MPa. The tensile strength indicated a range of 2.10~2.44 MPa. The bending strength was stronger about 3~16 % in case of mixing with PP fiber volume than normal concrete. The flexure strength indicated a range of 4.30~4.83 MPa. The toughness indicated a range of $0{\sim}19.88N{\cdot}mm$ and was stronger about 6.7 times in case of PP fiber volume $9kg/m^3$ than PP fiber volume $1kg/m^3$. The pavement with PP fiber volume over such a fixed quantity in the roads of a respectable amount load can have a effect to prevent not only resistance against clack but also rip off failures.

Mechanical Properties of Granite Soil Concrete with Polypropylene Fiber (폴리프로필렌 섬유보강 화강토 콘크리트의 역학적 특성)

  • Nam, Ki Sung;Jun, Hyung Soon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This study will not only prove experimental dynamic properties which are classified to slump, compressive strength, tensile strength, flexure strength and toughness granite soil concrete with a fine aggregate of granite soil and blast-furnace cement and polypropylene fiber over 45 mm, but also establish a basic data in order to use environment-friendly pavement through prove useful pavement mixed with granite and polypropylene (PP) fiber which is a kind of material to prevent a dry shrinkage clack, a partial destruction and useful and light. The value of slump test was gradually increased by PP fiber volume 3 $kgf/m^3$, but compressive strength took a sudden turn for the worse from 5 $kgf/m^3$. The compressive strength indicated a range of 13.72~18.35 MPa. On the contrary to compressive strength, the tensile strength showed to decrease with rising PP fiber volume, and the tensile strength indicated a range of 1.43~1.64 MPa. The tensile strength was stronger about 2~15 % in case of mixing with PP fiber volume than normal concrete. The flexural strength indicated a range of 2.76~3.41 MPa. The flexural strength was stronger about 20 % in case of PP fiber volume 0 $kg/m^3$ than PP fiber volume 9 $kg/m^3$. The toughness indicated a range of 0~25.46 $N{\cdot}mm$ and increased proportionally with PP fiber volume. The toughness was stronger about 8.3 times in case of PP fiber volume 9 $kg/m^3$ than PP fiber volume 1 $kg/m^3$. The pavement with PP fiber volume over such a fixed quantity in the park roads and walkways can have a effect to prevent not only resistance against clack but also rip off failures.

Rheological Properties of Organic Fiber-Reinforced Thermoplastics (유기섬유 강화 열가소성 복합재료의 유변학적 특성)

  • Lee, Yong-Mu;Cha, Yun-Jong;Kim, Seong-Hyeon;Yun, Yeo-Seong;Yun, Ju-Ho;Choe, Hyeong-Gi
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.786-795
    • /
    • 1996
  • The fiber reinforced thermoplastics(FRTP) were prepared with polypropylene fiber(PP) as matrix and polyvinyl alchol(VF), aramid(KF) or polyamide fiber(PAF) as the reinforcing materials using the integrated fiber mixing apparatus. The reinforced thermoplastic sheets were prepared by com¬pression molding and their morphology, rheological and mechanical properties were characterized. In the morphological properties of composites, the wettability of the reinforced thermoplastics were decreased in proportion to the content of fibers. At low angular frequency, the viscosity of PAF /PP and VF/PP composite was increased with the content of reinforced fiber. However at high frequency the viscosity of composite reinforced with 5~20wt% fiber, was shown the reduced values which approaches that of the neat matrix. The mechanical properties of the composite were changed with the content of reinforecd fiber, and VF/PP and KF/PP composite had better properties than PAF/PP system.

  • PDF

Fundamental Properties and Spalling Resistance of High Strength Concrete Containing Hybrid Organic fiber (복합유기섬유를 사용한 고강도 콘크리트의 기초특성 및 폭렬방지)

  • Pei, Chang-Chun;Han, Dong-Yeop;Lee, Jin-Woo;Han, Chang-Pyung;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.745-748
    • /
    • 2006
  • This study investigates the fundamental properties and examines spalling appearances and residual compressive strength of high strength concrete containing hybrid organic fibers subjected to fire. Test showed that overall, an increase of fiber content decreased the fluidity of concrete, but specimens containing polyvinyl alcoho(PVA)+polypropylene(PP) fiber and nylon(NY)+PP fiber had improved flow. In addition, the air content of all specimens was properly ranged in target value, regardless of fiber content. As for the spalling properties when completed the fire test, control concrete exhibited spalling occurrence due to sudden elevated temperature. However, specimens containing more than 0.1 vol% of PP fiber prevented the spalling, while specimens containing PP+CL and PVA+PP fiber can protected from fire in more than 0.15vol% of the fiber content. Importantly, a specimen containing only 0.05vol% of NY+PP showed the favorable spalling resistance performance.

  • PDF

Impact Properties of Organic Fiber Reinforced Thermoplastic Composites (유기섬유강화 열가소성고분자 복합재료의 충격특성)

  • Im, Seung-Soon;Lee, Seung-Bae;Lee, Yong-Moo;Choi, Hyeong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.424-432
    • /
    • 1996
  • The fiber reinforced thermoplastic composites(FRTP) were prepared with polypropylene fiber(PPF) as matrix and vinylon(VF), Aramid(KF) or nylon fiber(PAF) as reinforcing materials using the integrated fiber mixing apparatus. The composite sheets were prepared by compression molding and their impact and morphological properties were characterized. VF/PP system showed the maximum value in Izod impact strength, while KF/PP system showed the maximum value in high rate impact properties. Ductility Index(DI) order was VF/PP>KF/PP>PAF/PP. A maximum DI for VF/PP, 2.43, was obtained when the weight fraction of VF was 20%. The optimum amount of the reinforcing organic fiber was found to be 20~30%. As a result, it is concluded that VF/PP system has better interfacial adhesion properties than either KF/PP or PAF/PP.

  • PDF

Evaluation on High-Temperature Mechanical Properties of 150MPa Concrete Mixed with PP and NY Fiber (PP, NY섬유를 혼입한 150MPa 콘크리트의 고온역학적 특성)

  • Baek, Jae-Uk;Kim, Gyu-Yong;Yoon, Min-Ho;Hwang, Eui-Chul;Son, Min-Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.5-6
    • /
    • 2017
  • Ultra high-strength concrete can prevent spalling by mixed ratio of PP and NY fiber. However, there is a lack of research on the deterioration of strength due to changes in mechanical properties after spalling prevention. In this study, the effect of high temperature on the mechanical properties of 150MPa concrete mixed with PP and NY fiber was evaluated. As a result, mixing PP and NY fiber is judge to be little effect on the mechanical properties of the 150MPa concrete at high temperature.

  • PDF

An Experimental Study on the Curing Method and PP Fiber Mixing Ratio on Spalling Resistance of High Strength Concrete (양생요인 및 PP 섬유 혼입율 변화에 따른 고강도 콘크리트의 폭렬특성)

  • Han, Cheon-Goo;Kim, Won-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.113-119
    • /
    • 2009
  • This study is to investigate the fundamental and fireproof qualities of high strength concrete corresponding to changes in the curing factors and the PP fiber ratio. The results were as follows. For the fundamental characteristics of concrete, the fluidity was reduced in proportion to the increase in the PP fiber ratio. The compressive strength was somewhat reduced according to an increase in the PP fiber ratio. However, it had the high strength scope of more than 60 MPa at 7 days and of more than 90 MPa at 28 days. On the spalling mechanism followed by changes of the water content ratio, spalling was prevented in all combinations, except the specimen without PP fiber and subjected to 3.0% of moisture contents. When spalling was prevented at that time, the residual compressive strength ratio was 22%~41% and the mass reduction ratio was 5%~7%, which was relatively favorable. As the spalling mechanism corresponds to changes in the curing method, spalling was prevented in concrete with a PP fiber mixing ratio of more than 0.05% in the event of standard curing, and in concrete with a PP fiber mixing ratio of more than 0.10% in the case of steam curing and autoclave curing. In these cases, when spalling was prevented, the residual compressive strength ratio was 23~42% and the mass reduction ratio was 7~11%. In these results, the ease of spalling prevention in high strength concrete was inversely proportional to the water content ratio. Depending on the curing method, spalling was prevented in concrete with over 0.05% PP fiber with standard curing and in concrete with over 0.1% PP fiber with steam curing and autoclave curing.

Surface Modified Glass-Fiber Effect on the Mechanical Properties of Glass-Fiber Reinforced Polypropylene Composites

  • Park, Sanghoo;Kim, Su-Jong;Shin, Eun Seob;Lee, Seung Jun;Kang, Beom Mo;Park, Kyu-Hwan;Hong, Seheum;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.182-187
    • /
    • 2019
  • To improve the mechanical properties of glass-fiber-reinforced polypropylene (PP) composites through interfacial adhesion control between the PP matrix and glass fiber, the surface of the glass fiber was modified with PP-graft-maleic anhydride (MAPP). Surface modification of the glass fiber was carried out through the well-known hydrolysis-condensation reaction using 3-aminopropyltriethoxy silane, and then subsequently treated with MAPP to produce the desired MAPP-anchored glass fiber (MAPP-a-GF). The glass-fiber-reinforced PP composites were prepared by typical melt-mixing technique. The effect of chemical modification of the glass fiber surface on the mechanical properties of composites was investigated. The resulting mechanical and morphological properties showed improved interfacial adhesion between the MAPP-a-GF and PP matrix in the composites.