• Title/Summary/Keyword: PRAS algorithm

Search Result 3, Processing Time 0.019 seconds

An Efficient Partial Reanalysis Algorithm for the Locally Changed Structures (부분적 강성 변화에 따른 효율적 부분 재해석 알고리즘)

  • Kim Chee-Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.459-467
    • /
    • 2004
  • This paper presents an efficient reanalysis algorithm, named PRAS (Partial Reanalysis algorithm using Adaptable Substructuring), for the partially changed structures. The algorithm recalculates directly any displacement or member force under consideration in real time without a full reanalysis in spite of local changes in member stiffness or connectivity_ The key procedures consists of 1) partitioning the whole structure into the changed part and the unchanged part, 2) condensing the internal degrees of freedom and forming the unchanged part substructure, 3) assembling and solving the new stiffness matrix from the unchanged part substructure and the changed members.

Partial Reanalysis Algorithm with Static Condensation (정적응축기법을 이용한 부분재해석 알고리즘)

  • Kim, Chee-Kyeong;Choi, Dong-In
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.175-181
    • /
    • 2006
  • This paper presents an efficient reanalysis algorithm, named PRAS (Partial Reanalysis algorithm using Adaptable Substructuring), for the partially changed structures. The algorithm recalculates directly any displacement or member force under consideration in real time without a full reanalysis in spite of local changes in member stiffness or connectivity. The key procedures consists of 1) partitioning the whole structure into the changed part and the unchanged part, 2) condensing the internal degrees of freedom and forming the unchanged part substructure, 3) assembling and solving the new stiffness matrix from the unchanged part substructure and the changed members.

  • PDF

Novel Diagnostic Algorithm Using tuf Gene Amplification and Restriction Fragment Length Polymorphism is Promising Tool for Identification of Nontuberculous Mycobacteria

  • Shin, Ji-Hyun;Cho, Eun-Jin;Lee, Jung-Yeon;Yu, Jae-Yon;Kang, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.323-330
    • /
    • 2009
  • Nontuberculous mycobacteria (NTM) are a major cause of opportunistic infections in immunocompromised patients, making the reliable and rapid identification of NTM to the species level very important for the treatment of such patients. Therefore, this study evaluated the usefulness of the novel target genes tuf and tmRNA for the identification of NTM to the species level, using a PCRrestriction fragment length polymorphism analysis (PRA). A total of 44 reference strains and 17 clinical isolates of the genus Mycobacterium were used. The 741 bp or 744 bp tuf genes were amplified, restricted with two restriction enzymes (HaeIII/MboI), and sequenced. The tuf gene-PRA patterns were compared with those for the tmRNA (AvaII), hsp65 (HaeIII/HphI), rpoB (MspI/HaeIII), and 16S rRNA (HaeIII) genes. For the reference strains, the tuf gene-PRA yielded 43 HaeIII patterns, of which 35 (81.4%) showed unique patterns on the species level, whereas the tmRNA, hsp65, rpoB, and 16S rRNA-PRAs only showed 10 (23.3%), 32 (74.4%), 19 (44.2%), and 3 (7%) unique patterns after single digestion, respectively. The tuf gene-PRA produced a clear distinction between closely related NTM species, such as M. abscessus (557-84-58) and M. chelonae (477-84-80-58), and M. kansasii (141-136-80-63-58-54-51) and M. gastri (141-136-117-80-58-51). No difference was observed between the tuf-PRA patterns for the reference strains and clinical isolates. Thus, a diagnostic algorithm using a tuf gene-targeting PRA is a promising tool with more advantages than the previously used hsp65, rpoB, and 16S rRNA genes for the identification of NTM to the species level.