• Title/Summary/Keyword: PREM

Search Result 55, Processing Time 0.034 seconds

Technical Essentials of the Earth's Free Oscillation Mode Computation

  • Chung, Tae-Woong;Shin, Jin-Soo;Na, Sung-Ho
    • Journal of the Korean earth science society
    • /
    • v.38 no.6
    • /
    • pp.427-441
    • /
    • 2017
  • Theory of Earth's free oscillation is revisited. Firstly, we summarized the underlying formulations, such as the equation of motion and its conversion into numerically integrable form and then explained computational procedures including the treatment of inner core-outer core boundary and core-mantle boundary, while the latter information has not been explicitly given in most publications. Secondly, we re-calculated the periods of Earth's free oscillation modes (period >200 s) for PREM model. In doing so we acquired the values of modes missing in Dziewonski and Anderson (1981). As a case observation, one seismogram after 2011 Tohoku earthquake recorded at Daejeon, Korea (KIGAM seismic station) was briefly analyzed to identify free oscillation mode excitations on its spectra. The material in this article will be most clear guide for those on calculating the Earth's free oscillation mode.

Cost-effective method for reducing local failure of floodwalls verified by centrifuge tests

  • Chung R. Song;Binyam Bekele;Brian D. Sawyer;Ahmed Al-Ostaz;Alexander Cheng;Vanadit-Ellis Wipawi
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.155-165
    • /
    • 2023
  • Hurricane Katrina swept New Orleans, Louisiana, USA, in 2005, causing more than 1,000 fatalities and severe damage to the flood protection system. Recovery activities are complete, however, clarifying failure mechanisms and devising resilient and cost-effective retrofitting techniques for the flood protection system are still of utmost importance to enhance the general structural integrity of water retaining structures. This study presents extensive centrifuge test results to find various failure mechanisms and effective retrofitting techniques for a levee system. The result confirmed the rotational failure and translational failure mechanisms for the London Ave. Canal levee and 17th St. Canal levee, respectively. In addition, it found that the floodwalls with fresh waterstop in their joints perform better than those with old/weathered waterstop by decreasing pore water pressure build-up in the levee. Structural caps placed on the top of the joints between I-walls could also prevent local failure by spreading the load to surrounding walls. At the same time, the self-sealing bentonite-sand mixture installed along the riverside of floodwalls could mitigate the failure of floodwalls by blocking the infiltration of seepage water into the gap formed between levee soils and floodwalls.