• Title/Summary/Keyword: PRNP

Search Result 7, Processing Time 0.017 seconds

Genomic Sequence Variability of the Prion Gene (PRNP) in Korean Cattle

  • Choi, Sang-Haeng;Chae, Sung-Hwa;Choi, Han-Ho;Kim, Jeong-Seon;Kang, Bo-Ra;Yeo, Jung-Sou;Choi, Inho;Lee, Yong-Seok;Choy, Yun-Ho;Park, Hong-Seog
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.653-660
    • /
    • 2007
  • In this study, we have investigated sequence variants in the PRNP gene of 20 individuals belonging to the Korean cattle, and have analyzed and compared genetic features between varieties of other cattle breeds. Of the 73 sequence variants identified in Korean cattle, 27 were identified for the first time in this study, whereas 46 of these polymorphisms had previously been isolated. We discovered a 2.6 kb SNP hot spot region localized on the putative promoter region of the PRNP gene. Furthermore, the copy numbers of the octapeptide repeat (24 bp indel) which is detected on the coding sequence (CDS) of the PRNP exhibited a completely homozygous 6/6 genotype which is dominant in other cattle breeds. We also characterized a new 19 bp/10 bp allele located on the putative promoter region of the PRNP gene, which represented 0.71 in allele frequency. To the best of our knowledge, this report is the first to address polymorphisms of the PRNP gene structure in Korean cattle in which BSE has yet to be discovered. Therefore, our findings may prove useful with regard to our current understanding of allelic diversity in bovine species, and may also provide new insights into the genetic factors associated with susceptibility or resistance to BSE.

Identification of Single Nucleotide Polymorphisms in PRNP Gene of Korean Native Goats

  • Hoque, Md. Rashedul;Yu, Seong-Lan;Yeon, Seong-Heum;Lee, Jun-Heon
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.453-458
    • /
    • 2009
  • Prion protein (PRNP) is known to be a causative protein for transmissible spongiform encephalopathy (TSE), a disease occurring in human and animals. Previous results indicate that the genetic variability can affect the resistance and susceptibility of goat scrapie and can give the guideline for reducing the risk of this disease. Until now, 35 single nucleotide polymorphisms (SNPs) were identified in goat PRNP gene from many countries such as Great Britain, Italy, United States of America and Asian countries etc. In this study, SNPs in PRNP gene have been investigated to research the PRNP variations and their possible TSE risks in 60 Korean native goats. Based on the sequencing results, we identified four SNPs and three of those polymorphisms (G126A, C414T and C718T) were synonymous and the A428G polymorphism was non-synonymous which changes the amino acid histidine to arginine. Previously, all of these four SNPs were identified in Asian native goats. Specifically, five polymorphisms were identified in Asian native goats and two of them (G126A and C414T) were silent mutations, and the other SNPs (T304G, A428G and T718C) caused amino acid changes (W102G, H143R and S240P). Comparing with SNP results from other breeds, this study is an initial step to understand resistance and susceptibility of this disease in Korean native goats.

Single-nucleotide polymorphisms in prion protein gene of the Korean subspecies of Chinese water deer

  • Jeong, Hyun-Jeong;Lee, Joong-Bok;Park, Seung-Yong;Song, Chang-Seon;Kim, Bo-Sook;Rho, Jung-Rae;Yoo, Mi-Hyun;Jeong, Byung-Hoon;Kim, Yong-Sun;Choi, In-Soo
    • Korean Journal of Veterinary Research
    • /
    • v.49 no.1
    • /
    • pp.59-62
    • /
    • 2009
  • Susceptibility to chronic wasting disease (CWD) in cervid species has been associated with polymorphisms in the prion protein gene (PRNP). The single nucleotide polymorphisms (SNPs) were found in the PRNP of the Korean subspecies of Chinese water deer via analyses of the DNA sequences obtained from 34 individual deer. Two SNPs were detected at codons 77 and 100. One SNP at codon 77 encoding Glycine was determined to be a silent mutation but the other SNP detected at codon 100 induced an amino acid change, from Asparagine to Serine. The prion protein (PrP) amino acid sequence of the water deer showed 98.8-99.2% homology with those of American elk, white-tailed deer and mule deer. The PrP of the water deer contained amino acid residues closely related with CWD-susceptibility. This study is the first to describe genetic variations in the PRNP of the Korean subspecies of Chinese water deer.

Glycosylation modification of human prion protein provokes apoptosis in HeLa cells in vitro

  • Yang, Yang;Chen, Lan;Pan, Hua-Zhen;Kou, Yi;Xu, Cai-Min
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.331-337
    • /
    • 2009
  • We investigate the correlation between the glycosylation modified prion proteins and apoptosis. The wild-type PRNP gene and four PRNP gene glycosylated mutants were transiently expressed in HeLa cells. The effect of apoptosis induced by PrP mutants was confirmed by MTT assay, Hochest staining, Annexin-V staining and PI staining. ROS test detected ROS generation within the cells. The mitochondrial membrane potential was analyzed by the flow cytometry. The expression levels of Bcl-xL, Bax, cleaved Caspase-9 proteins were analyzed by Western Blot. The results indicated that the expressed non-glycosylated PrP in HeLa cells obviously induced apoptosis, inhibited the growth of cells and reduced the mitochondrial membrane potential, and more ROS generation and low levels of the apoptosis-related proteins Bcl-xL, the activated the cleaved Caspase-9 proteins were found. The apoptosis induced by non-glycosylated PrP demonstrates that its underlying mechanism correlates with the mitochondria-mediated signal transduction pathway.

Generation of ovine recombinant prion protein (25-232): Characterisation via anti-PrP monoclonal antibodies and CD spectroscopy

  • Yang, Su-Jeong;Thackray, Alana;Bujdoso, Raymond
    • Korean Journal of Veterinary Service
    • /
    • v.28 no.4
    • /
    • pp.393-405
    • /
    • 2005
  • In prion pathogenesis, the structural conversion of the cellular prion protein $(PrP^c)$ to its abnormal isomer $(PrP^{Sc})$ is believed to be a major event. The susceptibility or resistance to natural sheep scrapie is associated with polymorphisms of host PrP gene (PRNP) at amino acid residues 136, to a lesser extent 154. The 112 residue in ovine PrP displays a natural polymorphism, Methionine to Threonine, which has not been thoroughly investigated. However the cell-free conversion assay showed that ARQ with Thr112 $(T_{112}ARQ)^{1)}$ presents lower convertibility to $PrP^{Sc}$than wild type ARQ $(M_{112}ARQ)$ [1] In this study we generated ovine recombinant PrPs of 112 allelic variants by metal chelate affinity chromatography and cation exchange chromatography. The final purity of the ovine PrP ARQ was more than $95\%$. These variants showed similar immunoreactivity against anti-PrP monoclonal antibodies in Western blot and ELISA. The refolded $M_{112}ARQ$ and $M_{112}ARQ$ presented the secondary structural content to similar extent via CD spectroscopy analysis. The inherited structural features of $M_{112}ARQ$ and $M_{112}ARQ$ under the different biophysical conditions are in the middle of investigation.

Validation of Human HazChem Array Using VOC Exposure in HL-60 Cells

  • Oh, Moon-Ju;Kim, Seung-Jun;Kim, Jun-Sub;Kim, Ji-Hoon;Park, Hye-Won;Kim, Youn-Jung;Ryu, Jae-Chun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.45-51
    • /
    • 2008
  • Volatile Organic Compounds (VOCs) have been shown to cause nervous system disorders through skin contact or respiration, and also cause foul odors even at low densities in most cases. Also, as a compound itself, VOCs are directly harmful to the environment and to the human body, and may participate in photochemical reactions in air to create secondary pollutants. In this study, HL-60 cells were treated with volatile organic compounds, including ethylbenzene and trichloroethylene, at a value of $IC_50$. Then, the in house-prepared Human HazChem arrayer was utilized in order to compare the gene expression between the two VOCs. After hybridization, 8 upregulated genes and 8 downregulated genes were discovered in the HazChem array. The upregulated genes were identified as SG15, TNFSF10, PRNP, ME1, NCOA4, SRXN1, TXNRD1, and XBP1. The downregulated genes were identified as MME, NRF1, PRARBP, CALCA, CRP, BAX, C7 or f40, and FGFR1. Such results were highly correlated with the quantitative RT-PCR results. The majority of the 16 genes were related with the characteristics of VOCs, including respiratory mechanism, apoptosis, and carcinogenesis-associated genes. Our data showed that our human HazChem array can be used to monitor hazardous materials via gene expression profiling.