• Title/Summary/Keyword: PSO-based design procedure

Search Result 12, Processing Time 0.029 seconds

PSO-Based Nonlinear PI-type Controller Design for Boost Converter

  • Seo, Sang-Wha;Kim, Yong;Choi, Han Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.211-219
    • /
    • 2018
  • This paper designs a nonlinear PI-type controller for the robust control of a boost DC-DC converter using a particle swarm optimization (PSO) algorithm. Based on the common knowledge that the transient responses can be improved if the P and I gains increase when the transient error is big, a nonlinear PI-type control design method is developed. A design procedure to autotune the nonlinear P and I gains is given based on a PSO algorithm. The proposed nonlinear PI-type controller is implemented in real time on a Texas Instruments TMS320F28335 floating-point DSP. Simulation and experimental results are given to demonstrate the effectiveness and practicality of the proposed method.

Design of Particle Swarm Optimization-based Polynomial Neural Networks (입자 군집 최적화 알고리즘 기반 다항식 신경회로망의 설계)

  • Park, Ho-Sung;Kim, Ki-Sang;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.398-406
    • /
    • 2011
  • In this paper, we introduce a new architecture of PSO-based Polynomial Neural Networks (PNN) and discuss its comprehensive design methodology. The conventional PNN is based on a extended Group Method of Data Handling (GMDH) method, and utilized the polynomial order (viz. linear, quadratic, and modified quadratic) as well as the number of node inputs fixed (selected in advance by designer) at Polynomial Neurons located in each layer through a growth process of the network. Moreover it does not guarantee that the conventional PNN generated through learning results in the optimal network architecture. The PSO-based PNN results in a structurally optimized structure and comes with a higher level of flexibility that the one encountered in the conventional PNN. The PSO-based design procedure being applied at each layer of PNN leads to the selection of preferred PNs with specific local characteristics (such as the number of input variables, input variables, and the order of the polynomial) available within the PNN. In the sequel, two general optimization mechanisms of the PSO-based PNN are explored: the structural optimization is realized via PSO whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the PSO-based PNN, the model is experimented with using Gas furnace process data, and pH neutralization process data. For the characteristic analysis of the given entire data with non-linearity and the construction of efficient model, the given entire system data is partitioned into two type such as Division I(Training dataset and Testing dataset) and Division II(Training dataset, Validation dataset, and Testing dataset). A comparative analysis shows that the proposed PSO-based PNN is model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames

  • Hadidi, Ali;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.323-347
    • /
    • 2014
  • This paper proposes a Particle Swarm Optimization (PSO) algorithm, which is improved by making use of the Harmony Search (HS) approach and called HS-PSO algorithm. A computer code is developed for optimal sizing design of non-linear steel frames with various semi-rigid and rigid beam-to-column connections based on the HS-PSO algorithm. The developed code selects suitable sections for beams and columns, from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange W-shapes, such that the minimum total cost, which comprises total member plus connection costs, is obtained. Stress and displacement constraints of AISC-LRFD code together with the size constraints are imposed on the frame in the optimal design procedure. The nonlinear moment-rotation behavior of connections is modeled using the Frye-Morris polynomial model. Moreover, the P-${\Delta}$ effects of beam-column members are taken into account in the non-linear structural analysis. Three benchmark design examples with several types of connections are presented and the results are compared with those of standard PSO and of other researches as well. The comparison shows that the proposed HS-PSO algorithm performs better both than the PSO and the Big Bang-Big Crunch (BB-BC) methods.

Application of Particle Swarm Optimization for Harmonic State Estimation (전력시스템 고조파 상태 추정에서 PSO 적용)

  • Wang, Y.P.;Jeong, J.W.;Kim, H.H.;An, B.C.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.529-530
    • /
    • 2007
  • The design of a measurement system to perform Harmonic State Estimation(HSE) is a very complex problem. In particular, the number of available harmonic analysis measurement instruments is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents an optimal algorithm of HSE which is based on an optimal placement of measurement points using PSO. This PSO-HSE has been applied to power system for the validation of an optimal algorithm of HSE. The study results have indicated an economical and effective method for optimal placement of measurement points using PSO in the HSE.

  • PDF

Design of Data-centroid Radial Basis Function Neural Network with Extended Polynomial Type and Its Optimization (데이터 중심 다항식 확장형 RBF 신경회로망의 설계 및 최적화)

  • Oh, Sung-Kwun;Kim, Young-Hoon;Park, Ho-Sung;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.639-647
    • /
    • 2011
  • In this paper, we introduce a design methodology of data-centroid Radial Basis Function neural networks with extended polynomial function. The two underlying design mechanisms of such networks involve K-means clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on K-means clustering method for efficient processing of data and the optimization of model was carried out using PSO. In this paper, as the connection weight of RBF neural networks, we are able to use four types of polynomials such as simplified, linear, quadratic, and modified quadratic. Using K-means clustering, the center values of Gaussian function as activation function are selected. And the PSO-based RBF neural networks results in a structurally optimized structure and comes with a higher level of flexibility than the one encountered in the conventional RBF neural networks. The PSO-based design procedure being applied at each node of RBF neural networks leads to the selection of preferred parameters with specific local characteristics (such as the number of input variables, a specific set of input variables, and the distribution constant value in activation function) available within the RBF neural networks. To evaluate the performance of the proposed data-centroid RBF neural network with extended polynomial function, the model is experimented with using the nonlinear process data(2-Dimensional synthetic data and Mackey-Glass time series process data) and the Machine Learning dataset(NOx emission process data in gas turbine plant, Automobile Miles per Gallon(MPG) data, and Boston housing data). For the characteristic analysis of the given entire dataset with non-linearity as well as the efficient construction and evaluation of the dynamic network model, the partition of the given entire dataset distinguishes between two cases of Division I(training dataset and testing dataset) and Division II(training dataset, validation dataset, and testing dataset). A comparative analysis shows that the proposed RBF neural networks produces model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

Data Interpolation and Design Optimisation of Brushless DC Motor Using Generalized Regression Neural Network

  • Umadevi, N.;Balaji, M.;Kamaraj, V.;Padmanaban, L. Ananda
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.188-194
    • /
    • 2015
  • This paper proposes a generalized regression neural network (GRNN) based algorithm for data interpolation and design optimization of brushless dc (BLDC) motor. The procedure makes use of magnet length, stator slot opening and air gap length as design variables. Cogging torque and average torque are treated as performance indices. The optimal design necessitates mitigating the cogging torque and maximizing the average torque by varying design variables. The data set for interpolation and ensuing design optimisation using GRNN is obtained by modeling a standard BLDC motor using finite element analysis (FEA) tool MagNet 7.1.1. The performance indices of the standard motor obtained using FEA are validated with an experimental model and an analytical method. The optimal design is authenticated using particle swarm optimization (PSO) algorithm and the performance indices of the optimal design obtained using GRNN is validated using FEA. The results indicate the suitability of GRNN as an interpolation and design optimization tool for a BLDC motor.

Design of Frequency Selective Surface Based Artificial Magnetic Conductor Using the Particle Swarm Optimization (PSO를 이용한 주파수 선택 구조 기반 인공 자기 도체 설계)

  • Hong, Ic-Pyo;Lee, Kyung-Won;Yook, Jong-Gwan;Cho, Chang-Min;Chun, Hueng-Jae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.610-616
    • /
    • 2010
  • In this paper, particle swarm optimization(PSO) is applied for the design of frequency selective surface based artificial magnetic conductor. An equivalent circuit model for this artificial magnetic conductor(AMC) with Jerusalem Cross arrays was derived and then PSO was applied for obtaining the optimized geometrical parameters with desired resonant frequency. The resonant frequency and the reflection phase characteristics from the optimization were compared to the results from commercial software for verifying the validity of this paper. The procedure presented in this paper can be applied to design the AMC with different frequency selective surface and also can be used for the design of microwave circuits like the AMC ground planes.

Optimal design of homogeneous earth dams by particle swarm optimization incorporating support vector machine approach

  • Mirzaei, Zeinab;Akbarpour, Abolfazl;Khatibinia, Mohsen;Siuki, Abbas Khashei
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.709-727
    • /
    • 2015
  • The main aim of this study is to introduce optimal design of homogeneous earth dams with oblique and horizontal drains based on particle swarm optimization (PSO) incorporating weighted least squares support vector machine (WLS-SVM). To achieve this purpose, the upstream and downstream slopes of earth dam, the length of oblique and horizontal drains and angle among the drains are considered as the design variables in the optimization problem of homogeneous earth dams. Furthermore, the seepage through dam body and the weight of dam as objective functions are minimized in the optimization process simultaneously. In the optimization procedure, the stability coefficient of the upstream and downstream slopes and the seepage through dam body as the hydraulic responses of homogeneous earth dam are required. Hence, the hydraulic responses are predicted using WLS-SVM approach. The optimal results of illustrative examples demonstrate the efficiency and computational advantages of PSO with WLS-SVM in the optimal design of homogeneous earth dams with drains.

Prediction Model for Specific Cutting Energy of Pick Cutters Based on Gene Expression Programming and Particle Swarm Optimization (유전자 프로그래밍과 개체군집최적화를 이용한 픽 커터의 절삭비에너지 예측모델)

  • Hojjati, Shahabedin;Jeong, Hoyoung;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.651-669
    • /
    • 2018
  • This study suggests the prediction model to estimate the specific energy of a pick cutter using a gene expression programming (GEP) and particle swarm optimization (PSO). Estimating the performance of mechanical excavators is of crucial importance in early design stage of tunnelling projects, and the specific energy (SE) based approach serves as a standard performance prediction procedure that is applicable to all excavation machines. The purpose of this research, is to investigate the relationship between UCS and BTS, penetration depth, cut spacing, and SE. A total of 46 full-scale linear cutting test results using pick cutters and different values of depth of cut and cut spacing on various rock types was collected from the previous study for the analysis. The Mean Squared Error (MSE) associated with the conventional Multiple Linear Regression (MLR) method is more than two times larger than the MSE generated by GEP-PSO algorithm. The $R^2$ value associated with the GEP-PSO algorithm, is about 0.13 higher than the $R^2$ associated with MLR.

Evolutionary Design of Radial Basis Function-based Polynomial Neural Network with the aid of Information Granulation (정보 입자화를 통한 방사형 기저 함수 기반 다항식 신경 회로망의 진화론적 설계)

  • Park, Ho-Sung;Jin, Yong-Ha;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.862-870
    • /
    • 2011
  • In this paper, we introduce a new topology of Radial Basis Function-based Polynomial Neural Networks (RPNN) that is based on a genetically optimized multi-layer perceptron with Radial Polynomial Neurons (RPNs). This study offers a comprehensive design methodology involving mechanisms of optimization algorithms, especially Fuzzy C-Means (FCM) clustering method and Particle Swarm Optimization (PSO) algorithms. In contrast to the typical architectures encountered in Polynomial Neural Networks (PNNs), our main objective is to develop a design strategy of RPNNs as follows : (a) The architecture of the proposed network consists of Radial Polynomial Neurons (RPNs). In here, the RPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Fuzzy C-Means (FCM) clustering method. The RPN dwells on the concepts of a collection of radial basis function and the function-based nonlinear (polynomial) processing. (b) The PSO-based design procedure being applied at each layer of RPNN leads to the selection of preferred nodes of the network (RPNs) whose local characteristics (such as the number of input variables, a collection of the specific subset of input variables, the order of the polynomial, and the number of clusters as well as a fuzzification coefficient in the FCM clustering) can be easily adjusted. The performance of the RPNN is quantified through the experimentation where we use a number of modeling benchmarks - NOx emission process data of gas turbine power plant and learning machine data(Automobile Miles Per Gallon Data) already experimented with in fuzzy or neurofuzzy modeling. A comparative analysis reveals that the proposed RPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.