• Title/Summary/Keyword: PV%2FT system

Search Result 1, Processing Time 0.014 seconds

Removal of reactive black 5 dye by using polyoxometalate-membrane

  • Topaloglu, Ali Kemal;Yildirim, Yilmaz
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • A POM-membrane was fabricated by immobilizing a keggin type polyoxometalate (POM) H5PV2Mo10O40 onto the surface of microporous flat-sheet polymeric polyvinylidene fluoride (PVFD) membrane using a chemical deposition method. The POM-membrane was characterized by FT-IR, SEM and EDX to confirm existing of the POM onto the membrane surface. The POM-membrane was used to remove an anionic textile dye (Reactive Black 5 named as an RB5) from aqueous phases with a cross-flow membrane filtration and a batch adsorption system. The dye removal efficiency of the POM-membrane using the cross-flow membrane filtration system and the batch adsorption system was about 88% and 98%, respectively. The influence factors such as contact time, adsorbent dosage, pH, and initial dye concentration were investigated to understand the adsorption mechanism of the RB5 dye onto the POM-membrane. To find the best fitting isotherm model, Langmuir, Freundlich, BET and Harkins-Jura isotherm models were used to analyze the experimental data. The isotherm analysis showed that the Langmuir isotherm model was found to the best fit for the adsorption data (R2 = 0.9982, qmax = 24.87 mg/g). Also, adsorption kinetic models showed the pseudo second order kinetic model was found the best model to fit the experimental data (R2 = 0.9989, q = 8.29 mg/g, C0 = 15 ppm). Moreover, after four times regeneration with HNO3 acid, the POM-membrane showed high regenerability without losing dye adsorption capacity.