• Title/Summary/Keyword: PV System

Search Result 1,528, Processing Time 0.031 seconds

A study on PV-AF-SPE system connected with utility (계통 연계형 PV-AF-SPE 시스템에 관한 연구)

  • Lee, Dong-Han;Lee, Suk-Ju;Kim, Jong-Hyun;Park, Min-Won;Yu, In-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.117-120
    • /
    • 2006
  • In this paper an integrated model of PV-AF (Photovoltaic-Active Filter) and PV-SPE(Photovoltaic Solid Polymer Electrolyte) system using PSCAD/EMTDC were explained in detaiil. The main concept of PV-AF system starts from the 'harmonics'. In order to deliver power to utility, PV system essentially needs a converter system. Here PV-AF system adds the function of active filter to the converter system installed in PV system, which was introduced already in several papers. PV-SPE system has been studied as a replacement of existing hydrogen production technology that emits large amount of carbon dioxide into atmosphere. Until now, these two systems, PV-AF and PV-SPE, have been considered separately However, in this paper, characteristics and advantages of combined system are discussed in detail.

  • PDF

A Study on the Algorithm for Interconnection of PV System on Power Distribution System Considering Reliability (신뢰도를 고려한 태양광시스템의 배전계통 연계 알고리즘에 관한 연구)

  • Moon, Jong-Fil
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.241-245
    • /
    • 2011
  • In this paper, when photovoltaic (PV) systems are connected to power distribution system, most effective capacity and connected-point of PV system are presented considering power distribution system reliability. The reliability model of PV system is presented considering the duration of sunshine. Also the model of time-varying load and reliability test system bus2 model are used. To simulate the effects of PV system, various cases are selected; (1) base case which is no connection of PV system to power distribution system when faults are occurred, (2) 3MW case which is 3[MW] connection of PV system (3) 4[MW] case, and (4) 20[MW] case which is 20[MW] connection of PV system to the bus of power distribution system. The capacity limit of connected PV system is settled to 14[MW] for all cases except case 4. The reliability for residential, general, industrial, and educational customer is evaluated.

The Loss Factor Analysis for PV System Optimization (PV시스템 최적화를 위한 손실요인 분석)

  • Jung, Yeong-Seok;Yu, Byung-Gyu;Yu, Gwon-Jong;Choi, Ju-Yeop;So, Jung-Hun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.22-28
    • /
    • 2006
  • Establishment of practicalization technologies is becoming more important as dissemination of domestic PV system has been increased. To improve performance through PV system optimization, this paper presents loss factors analysis of PV system based on results of field operational test. Also, as simulation results are compared with actual operational ones, the main loss factors of PV system due to performance degradation are reviewed.

A study on the application of PV-AF-SPE hybrid system (PV-AF-SPE 복합시스템의 응용에 관한 연구)

  • Lee, Dong-Han;Lee, Suk-Ju;Kim, Jong-Hyun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.341-343
    • /
    • 2006
  • In this paper an integrated model of PV-AF (Photovoltaic-Active Filter) and PV-SPE (Photovoltaic Solid Polymer Electrolyte) system using PSCAD/EMTDC were explained in detail. The main concept of PV-AF system starts from the "harmonics". In order to deliver power to utility, PV system essentially needs a converter system. Here PV-AF system adds the function of active filter to the converter system installed in PV system, which was introduced already in several papers. PV-SPE system has been studied as a replacement of existing hydrogen production technology that emits large amount of carbon dioxide into atmosphere. Until now, these two systems, PV-AF and PV-SPE, have been considered separately. However, in this paper, characteristics and advantages of combined system are discussed in detail.

  • PDF

Characteristic analysis of PV-AF-SPE system using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 PV-AF-SPE 시스템의 특성분석)

  • Lee, Dong-Han;Lee, Suk-Ju;Kim, Jong-Hyun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1205-1206
    • /
    • 2006
  • In this paper an integrated model of PV-AF (Photovoltaic-Active Filter) and PV-SPE (Photovoltaic Solid Polymer Electrolyte) system using PSCAD/EMTDC were explained in detail. The main concept of PV-AF system starts from the "harmonics". In order to deliver power to utility, PV system essentially needs a converter system. Here PV-AF system adds the function of active filter to the converter system installed in PV system, which was introduced already in several papers. PV-SPE system has been studied as a replacement of existing hydrogen production technology that emits large amount of carbon dioxide into atmosphere. Until now, these two systems, PV-AF and PV-SPE, have been considered separately. However, in this paper, characteristics and advantages of combined system are discussed in detail.

  • PDF

Economic Analysis on VLS-PV System from Sunbelt Region (Sunbelt 지역의 태양광발전 경제성분석)

  • Choi, Bong-Ha;Park, Soo-Uk;Lee, Deok-Ki;Kim, Seok-Ki;Song, Jin-Soo
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.86-92
    • /
    • 2006
  • This paper analyses the economics of 50kW PV system installed in Tibet and using domestic technology. We show that this system can be expanded to very large-scale photovoltaic power generation [VLS-PV] system successfully. Based on this result, we conduct the economic analysis of 100MW VLS-PV system designed assuming that it will be installed from 2008 to 2017 in Tibet. In this analysis, future price of PV module and system are estimated based on the methodology of experience curve. In 50kW PV system, the generation cost is calculated at 567.2 won/kWh and this is lower than the one of domestic PV system. In future 100MW VLS-PV system. the generation cost is calculated at 305.4 won/kWh by declining system price. If the lifetime and efficiency of the system goes up, due to future technological improvements, the generation cost can be lowered. Moreover, under the environmental and political effect, VLS-PV system can be as competitive as the conventional energy within 20 years.

  • PDF

Output Control Simulation of PV-AF Generation System under Various Weather Conditions (다양한 기상조건하에서의 AF기능을 갖는 태양광발전시스템의 출력제어 시뮬레이션)

  • Seong, Nak-Gueon;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1364-1366
    • /
    • 2002
  • The Photovoltaic(PV) generation system is a promising source of energy for the future. Since the need for renewable energy has been increased, the research of PV generation system has also been progressed. Recently, cost down of PV generation system has been accomplished and practical technologies of the solar energy developed, Moreover, grid connected PV generation system are becoming actual and general. Operational technology of the grid connected PV generation system is being a hot issue. Power output of PV system is directly affected by wether conditions. When AC power supply is needed, power conversion by an inverter and a MPPT control are necessary. In this paper, for stability improvement of PV generation system. Active filter(AF) function is added to PV generation system, and simulations of PV-AF system under various weather conditions are performed.

  • PDF

Analysis of Stability of PV System using the Eigenvalue according to the Frequency Variation and Requirements of Frequency Protection

  • Seo, Hun-Chul;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.480-485
    • /
    • 2012
  • Use of photovoltaic (PV) power generation system will become more widespread in the future due to anticipated cost reduction in PV technology. As the capacity of PV systems increases, a variation of power system frequency may prevent the stable output of PV system. However, the standard for the frequency protection of distributed generation in Korea Electric Power Corporation (KEPCO)'s rule does not include the setting of frequency protection. Therefore, this paper analyzes the correlation between the frequency protection requirements and the stability of grid-connected PV system for the adjustable operating setting of frequency protection. The distribution system interconnected with 3 MW PV system is modeled by Matlab/Simulink. The various values of frequency are simulated. For studied cases, the stability of PV system is analyzed. It is concluded that the setting of frequency protection is necessary to consider the stability of PV system.

A Study on the Priority Decision for Interconnection of PV System on Power Distribution System considering Customer Interruption Costs (정전비용 고려한 PV시스템의 배전계통 연계 우선순위 결정에 관한 연구)

  • Son, Chang-Nam;Han, Woon-Dong;Moon, Jong-Fil
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.163-168
    • /
    • 2014
  • In this paper, when photovoltaic systems are connected to distribution system, most effective capacity and location of PV system are studied considering customer interruption costs of power distribution system. The reliability model of PV system considering the duration of sunshine, the model of time-varying load and Roy Billinton test system (bus2 model) are used. To simulate the effects of PV system, various cases are selected; (1) base case which is no connection of PV system to power distribution system when faults are occurred, (2) 3MW case which is 3[MW] connection of PV system (3) 4[MW] case, and (4) 20[MW] case which is 20[MW] connection of PV system to the bus of power distribution system. The capacity limit of connected PV system is settled to 14[MW] for all cases except case 4. The reliability and customer interruption costs for residential, general, industrial, and educational customer is evaluated.

Performance Ratio of Crystalline Si and Triple Junction a-Si Thin Film Photovoltaic Modules for the Application to BIPVs

  • Cha, Hae-Lim;Ko, Jae-Woo;Lim, Jong-Rok;Kim, David-Kwangsoon;Ahn, Hyung-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.30-34
    • /
    • 2017
  • The building integrated photovoltaic system (BIPV) attracts attention with regard to the future of the photovoltaic (PV) industry. It is because one of the promising national and civilian projects in the country. Since land area is limited, there is considerable interest in BIPV systems with a variety of angles and shapes of PV panels. It is therefore expected to be one of the major fields for the PV industry in the future. Since the irradiation is different from each installation angle, the output can be predicted by the angles. This is critical for a PV system to be operated at maximum power and use an efficient design. The development characteristics of tilted angles based on data results obtained via long-term monitoring need to be analyzed. The ratio of the theoretically available and actual outputs is compared with the installation angles of each PV module to provide a suitable PV system for the user.