• Title/Summary/Keyword: PV system for station buildings

Search Result 2, Processing Time 0.017 seconds

A Study on Design of 1.5MW Photovoltaic Power Generation System using Gwangmyeong Railway Station Building (광명역 고속철도 역사를 활용한 1.5MW급 태양광발전시스템 설계 연구)

  • Yoo, Bok-Jong;Park, Chan-Bae;Lee, Ju
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.592-599
    • /
    • 2016
  • In the 21st yearly session of the Conference of the Parties (COP 21) of the 2015 United Nations Climate Change Conference, held in Paris, France, in December 2015, the "Paris Agreement" was negotiated; this is a new global agreement on the reduction of climate change, which encourages every country to participate in countermeasures for global climate change. Along with such movements, the electric railway sector has also been actively engaged in low carbon technology. This paper studied the building of a 1.5MW photovoltaic power generation system using the rooftop of the Gwangmyeong Station Building, which is the largest roof among the high-speed railway station buildings in Korea; this station has passenger traffic that reached about 7 million in 2014. For this study, we configured an optimized photovoltaic (PV) power generation system and then estimated the expected annual energy production by using PV system software; we also calculated the expected revenue that could be obtained by linking this source to the power distribution system. The obtained data were used to analyze the contribution of low-carbon energy that could be obtained by introducing a PV power generation system on the roof of an electric railway station building.

Optimal Design of Urban MICROGRID using Economical Analysis Program (경제성분석 프로그램을 이용한 도심형 마이크로그리드 최적 설계)

  • Seung-Duck, Yu;SungWoo, Yim;Youseok, Lim;SungWook, Hwang;JuHak, Lee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.69-72
    • /
    • 2022
  • This paper actually investigates the load on major large-scale buildings in the downtown area, examines the economic feasibility of installing PV and ESS in a microgrid target building, and evaluates whether an electric vehicle capable of V2G through two buildings is effective as an economical analysis program (HOMER) was analyzed using. It is economical to install a mixture of ESS rather than using the whole PV, and it is shown that if there is an electric vehicle using the V2G function of EV, there is an economic effect to replace the PV. So that Incentives and policies are needed to replace a large area of PV and utilize the existing parking lot to lead EV as a resource of the microgrid. Currently, P2X technology that stores power as ESS or converts it to other energy to control when surplus renewable energy occurs in large-capacity solar power plants and wind farms, etc. This is being applied, and efforts are being made to maintain the stability of the system through the management of surplus power, such as replacing thermal energy through a heat pump. Due to the increase in electric vehicles, which were recognized only as a means of transportation, technologies for using electric vehicles are developing. Accordingly, existing gas stations do not only supply traditional chemical fuels, but electricity, and super stations that also produce electricity have appeared. Super Station is a new concept power plant that can produce and store electricity using solar power, ESS, V2G, and P2G. To take advantage of this, research on an urban microgrid that forms an independent system by tying a large building and several buildings together and supplies power through a super station around the microgrid is in full swing.