• Title/Summary/Keyword: Package Substrate

Search Result 181, Processing Time 0.028 seconds

Anodic Alumina Based DRAM Package Substrate (양극산화 알루미나 기반의 DRAM 패키지 기판)

  • Kim, Moon-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.853-858
    • /
    • 2010
  • DRAM package substrate has been demonstrated using a thick alumina layer produced by aluminum anodization process. To apply a transmission-based design methodology, 2 dimensional electromagnetic simulation is performed. The design parameters including signal line width/spacing and alumina's thickness are optimized based on the simulation analysis and are verified with the fabrication and the measurement of the test patterns on the anodic alumina substrate. DDR2 DRAM package is chosen as a design vehicle. Aluminum anodization technique has been applied successfully to fabricate new DRAM package substrate.

A Study on Robust Design of PCB for Package on Package by Numerical Analysis with Unit and Substrate Level to Reduce Warpage (수치해석을 이용한 Package on Package용 PCB의 Warpage 감소를 위한 Unit과 Substrate 레벨의 강건설계 연구)

  • Cho, Seunghyun;Kim, Yun Tae;Ko, Young Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.31-39
    • /
    • 2021
  • In this paper, warpage analysis that separates PCB for PoP (Package on Package) into unit and substrate using FEM (Finite Element Method), analysis of the effect of layer thickness on warpage, and SN (Signal-to-Noise) ratio by Taguchi method was carried. According to the analysis result, the contribution of the circuit layer on warpage was very high in the unit PCB, and the contribution of the outer layer was particularly high. On the other hand, the substrate PCB had a high influence of the circuit layer on warpage, but it was relatively low compared to the unit PCB, and the influence of the solder resist was rather increased. Therefore, considering the unit PCB and the substrate PCB at the same time, it is desirable to design the PCB for PoP layer-by-layer structure so that the outer and inner circuit layers are thick, the top solder resist is thin, and the thickness of the bottom solder resist is between 5 ㎛ and 25 ㎛.

ED COB Package Using Aluminum Anodization (알루미늄 양극산화를 사용한 LED COB 패키지)

  • Kim, Moonjung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4757-4761
    • /
    • 2012
  • LED chip on board(COB) package has been fabricated using aluminum substrate and aluminum anodization process. An alumina layer, used as a dielectric in COB substrate, is produced on aluminum substrate by selective anodization process. Also, selective anodization process makes it possible to construct a thermal via with a fully-filled via hole. Two types of the COB package are fabricated in order to analyze the effects of their substrate types on thermal resistivity and luminous efficiency. The aluminum substrate with the thermal via shows more improved measurement results compared with the alumina substrate. These results demonstrate that selective anodization process and thermal via can increase heat dissipation of COB package in this work. In addition, it is proved experimentally that these parameters also can be enhanced using efficient layout of multiple chip in the COB package.

DRAM Package Substrate Using Aluminum Anodization (알루미늄 양극산화를 사용한 DRAM 패키지 기판)

  • Kim, Moon-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.69-74
    • /
    • 2010
  • A new package substrate for dynamic random access memory(DRAM) devices has been developed using selective aluminum anodization. Unlike the conventional substrate structure commonly made by laminating epoxy-based core and copper clad, this substrate consists of bottom aluminum, middle anodic aluminum oxide and top copper. Anodization process on the aluminum substrate provides thick aluminum oxide used as a dielectric layer in the package substrate. Placing copper traces on the anodic aluminum oxide layer, the resulting two-layer metal structure is completed in the package substrate. Selective anodization process makes it possible to construct a fully filled via structure. Also, putting vias directly in the bonding pads and the ball pads in the substrate design, via in pad structure is applied in this work. These arrangement of via in pad and two-layer metal structure make routing easier and thus provide more design flexibility. In a substrate design, all signal lines are routed based on the transmission line scheme of finite-width coplanar waveguide or microstrip with a characteristic impedance of about $50{\Omega}$ for better signal transmission. The property and performance of anodic alumina based package substrate such as layer structure, design method, fabrication process and measurement characteristics are investigated in detail.

3D SDRAM Package Technology for a Satellite (인공위성용 3차원 메모리 패키징 기술)

  • Lim, Jae-Sung;Kim, Jin-Ho;Kim, Hyun-Ju;Jung, Jin-Wook;Lee, Hyouk;Park, Mi-Young;Chae, Jang-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2012
  • Package for artificial satellite is to produce mass production for high package with reliability certification as well as develop SDRAM (synchronous dynamic RAM) module which has such as miniaturization, mass storage, and high reliability in space environment. It requires sophisticated technology with chip stacking or package stacking in order to increase up to 4Gbits or more for mass storage with space technology. To make it better, we should secure suitable processes by doing design, manufacture, and debugging. Pin type PCB substrate was then applied to QFP-Pin type 3D memory package fabrication. These results show that the 3D memory package for artificial satellite scheme is a promising candidate for the realization of our own domestic technologies.

Silicon Substrate Coupling Modeling and Analysis including RF Package Inductance (RF 패키지 인덕턴스가 실리콘 기판 커플링에 미치는 영향 모델링 및 해석)

  • Jin, U-Jin;Eo, Yeong-Seon;Sim, Jong-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • Including RF Package inductance, substrate coupling through conductive silicon(Si)-substrate is modeled and quantitatively characterized. 2-port substrate coupling model is extended for the characterization of multi-port substrate coupling between digital circuit block and analog/RF circuit block. Furthermore, scalable parameter extraction model is developed. Multi-port substrate coupling can be investigated by linearly superposing a frequency-dependent 2-port substrate coupling model using scalable parameters. In addition, Substrate coupling including RF package inductance effect is quantitatively investigated. It is shown that package effect increases substrate coupling and shifts a characteristic frequencies(i.e., poles) to the higher frequency range. The proposed methodology can be efficiently used to the mixed-signal circuit performance verification.

DRAM Package Substrate Using Via Cutting Structure (비아 절단 구조를 사용한 DRAM 패키지 기판)

  • Kim, Moon-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.76-81
    • /
    • 2011
  • A new via cutting structure in 2-layer DRAM package substrate has been fabricated to lower its power distribution network(PDN) impedance. In new structure, part of the via is cut off vertically and its remaining part is designed to connect directly with the bonding pad on the package substrate. These via structure and substrate design not only provide high routing density but also improve the PDN impedance by shortening effectively the path from bonding pad to VSSQ plane. An additional process is not necessary to fabricate the via cutting structure because its structure is completed at the same time during a process of window area formation. Also, burr occurrence is minimized by filling the via-hole inside with a solder resist. 3-dimensional electromagnetic field simulation and S-parameter measurement are carried out in order to validate the effects of via cutting structure and VDDQ/VSSQ placement on the PDN impedance. New DRAM package substrate has a superior PDN impedance with a wide frequency range. This result shows that via cutting structure and power/ground placement are effective in reducing the PDN impedance.

Development of Clamp Type Transferring Mechanism for Package Substrate's Wet Process (패키지 기판 습식 공정용 클램프 이송 장치의 개발)

  • Ryu, Sun-Joong;Heo, Jun-Yeon;Cho, Seung-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.193-201
    • /
    • 2011
  • Clamp type transferring mechanism for package substrate's wet processes was newly developed instead of conventional roller type transferring mechanism. Clamp type transferring mechanism has the advantages of reducing the panel deflection and of minimizing the contact problem between the panel and the transferring mechanism. Individual clamp of the mechanism has two distinct mechanical functions which are perfectly fixing a panel during the transferring and generating adequate tension for the panel. To determine the mechanical parameters of the clamp, panel deflection simulation was conducted and the result was verified by the panel deflection measurement. Also, fixing angle of a clamp could be determined by the free body force analysis of individual clamp. Finally clamp type transferring mechanism was actually manufactured and the transferring performance was verified during the water spraying condition of the package substrate's wet processes.

Scheduling Methodology for MCP(Multi-chip Package) with Layer Sequence Constraint in Semiconductor Package (반도체 Package 공정에서 MCP(Multi-chip Package)의 Layer Sequence 제약을 고려한 스케쥴링 방법론)

  • Jeong, Young-Hyun;Cho, Kang-Hoon;Choung, You-In;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.1
    • /
    • pp.69-75
    • /
    • 2017
  • An MCP(Multi-chip Package) is a package consisting of several chips. Since several chips are stacked on the same substrate, multiple assembly steps are required to make an MCP. The characteristics of the chips in the MCP are dependent on the layer sequence. In the MCP manufacturing process, it is very essential to carefully consider the layer sequence in scheduling to achieve the intended throughput as well as the WIP balance. In this paper, we propose a scheduling methodology considering the layer sequence constraint.

Process Characteristics of Atmospheric Pressure Plasma for Package Substrate Desmear Process (패키지 기판 디스미어 공정의 대기압 플라즈마 처리 특성)

  • Ryu, Sun-Joong
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.337-345
    • /
    • 2009
  • When the drill hole diameter for the package substrate is under $100{\mu}m$, the smear in the drill hole cannot be eliminated by wet desmear process only. We intended to change the substrate's hydrophobic characteristics to hydrophilic characteristics by adapting the atmospheric pressure plasma prior to the wet desmear process. Atmospheric pressure plasma process was made as the inline type equipment which is adequate for the package substrate's manufacturing process and remote DBD type electrodes were used for the equipment. As the result of atmospheric pressure plasma processing, the contact angle of the substrate was enhanced from 71 degree to 30 degree. Dielectric film thickness, drill hole diameter and surface roughness were measured to evaluated the characteristics of the wet desmear process in case of plasma processing and in case of none. By the measurement, it was analyzed that the process uniformity within the whole panel was largely enhanced. Also, it was verified that the smear in the drill hole was eliminated efficiently which was analyzed by the SEM image of the drill hole.