• Title/Summary/Keyword: Paint-On

Search Result 678, Processing Time 0.023 seconds

A Study on Suitable the Amount of Consumption of 2K Urethane Paint (2액형 우레탄도료의 적정 소모량 연구)

  • You, Chang-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.130-135
    • /
    • 2010
  • Paint is used as top coat in Automobile Refinishing that is divided into 1K paint of base type and 2K paint of urethane type. after using 1K paint, it can be reusable. However 2K paint is not available that is mixed a certain amount of base with hardner, so 2K paint has to be used all at a time or discarded the rest. This study covered that colored Urethane paint and colorless urethane paint in top coating process of AR. Top coat urethane paint is divided into colored urethane paint and transparent urethane paint like clear coat. Colored urethane paint is used for paint that contains resin, pigment, solvent and additives. It is color such as black and white. While transparent urethane paint is used for paint that contains resin, solvent and additives. Urethane paint has a paint system that cur after several hours of mixing base and hardner. By a paint technician of a field and empirical data, we can also recognize that according to worker's paint style and experience, although he or she paint same car model and area, paint use of one's is different. There aren't guidelines workers refer to about paint use by car models and work scope because ARP works various car models that are in different color, size and area. After using urethane paint, the rest of paint has come, and there are highs and lows in paint use each time he or she works. Therefore, this study suggest a basic guideline to use paint efficiently and regularly by understanding area, the type of work, and paint use that are appropriate for each car model and regardless of workers and work scopes in AR.

Paint Simulation System Representing the Paint Characteristics Reflecting Opinions of Audiences (감상자의 견해가 반영된 물감 특징을 표현하는 물감 시뮬레이션 시스템)

  • You, Mi
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.906-914
    • /
    • 2014
  • There are many studies to create realistic paint effects and the research area still has attracted attention in these days. However, the consideration for the characteristics of the real paint effects from the point of viewers is not enough. In this paper, we extract the important paint features and survey the importance values. Based on the survey results, we suggest a new paint system. The paint system utilizes the paint simulation that reflects viscoelasticity and mixing suggested by You et al. (2013) and proposes the paint rendering method that represents the details of a paint, a solvent, and pigments. We survey the quality of our results and prove that our paint system is superior to the previous studies.

An Accurate and Efficient Method of the Spray Paint Simulation for Robot OLP (로봇 Off-Line Programming을 위한 페인트 스프레이 시뮬레이션 방법론 개발)

  • Lee, Seung-Chan;Song, In-Ho;Borm, Jin-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.4
    • /
    • pp.296-304
    • /
    • 2008
  • Recently, various attempts are being done to apply off-line programming system to field of paint robot. But most commercial simulation softwares have problems that are slow simulation speed and not support various painting paramenters on simulation. This paper proposes enhanced paint simulation method for off-line programming system. For these, this method used the mathematical model of flux field from a previous research. The flux field has the flux distribution function, which reflects on the feature of paint spray. A previous research derived this flux distribution function for an integral function and calculated paint thickness function for an integral function. But if flux distribution function is defined as an integral function, it is inadequate to use for real-time simulation because a number of calculation is needed for estimation of paint thickness distribution. Therefore, we defined the flux distribution function by numerical method for reducing a mount of calculation for estimation of paint thickness. We derived the equation of paint thickness function analytically for reducing a mount of calculation from the paint distribution function defined by numerical method. In order to prove proposed paint simulation method this paper compares the simulated and measured thickness. From this comparison this paper show that paint thickness distribution is predicted precisely by proposed spray paint simulation process.

Deposition and Corrosion Resistance of Electrophoretic Paint Coated on AZ61 and TZ61 Magnesium Alloys

  • Van Phuong, Nguyen;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.32-32
    • /
    • 2015
  • Electrophoretic paint (E-paint) was investigated on four different magnesium substrates: as-extruded AZ61 (AZ61), heat-treated AZ61 (AZ61-H), as-extruded TZ61 (TZ61) and heat-treated TZ61 (TZ61-H), to elucidate the effect of heat treatment and alloying elements on the deposition and corrosion resistance of E-paint. It was found that, a rapid increase of voltage, indicating that the deposition of E-paint had started, was observed after an induction time of 0.39 min for AZ61-H, 0.43 min for AZ61, 0.51 min for TZ61-H and 0.58 min for TZ61. The amount of E-paint deposited on the four samples was approximately similar, but the electrical charge used for the deposition process on the heat-treated samples was smaller than that on the as-extruded samples. The current efficiencies of E-paint on AZ samples (AZ61 and AZ61-H) were higher than those of TZ samples (TZ61 and TZ61-H), and on the heat-treated samples were higher than on as-extruded samples. All E-paintings on the four magnesium substrates had an excellent adhesion without any paint detached by tape peel-test. However, many large blisters were formed on the surface of AZ samples, and none, or very small blisters were observed on TZ samples after immersion test in DI-water for 500 h at $40^{\circ}C$. Under salt spray test (SST) conditions, E-paint on AZ samples showed blistering adjacent to scribes, while blistering of E-paint occurred on intact areas of TZ samples. The E-paint on heat-treated samples showed much better corrosion resistance than that on as-extruded samples. The ranking of greater to lesser corrosion resistance of the E-paint on these four different magnesium substrates is indicated by the order: AZ61-H > AZ61 > TZ61-H > TZ61.

  • PDF

Deposition and Characterization of Electrophoretic Paint on AZ31 Magnesium Alloy

  • Nguyen, Van Phuong;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.141-146
    • /
    • 2016
  • In this study, electrophoretic paint (E-paint) was deposited on the knife-abraded surface of AZ31 magnesium alloy (AZ31), and its adhesion and corrosion resistance were examined by tape peel-test and salt spray test, respectively. E-paint started to deposit on AZ31 Mg alloy after an inductance time and pores were found in the E-paint layer which is ascribed to hydrogen bubbles generated on the surface during the painting process. The pores disappeared after curing for 15 min at $160^{\circ}C$. The E-paint on AZ31 exhibited good adhesion after immersion in deionized water for 500 h at $40^{\circ}C$. The E-paint sample without scratch showed no corrosion after 1500 h of salt spray test. However, on the scratched sample, blisters were visible adjacent to the scratched sites after 500 h of salt spray test.

Adhesion and Corrosion Resistance of Electrophoretic Paint on "Electroless" Paint Coated AZ31 Mg Alloy

  • Phuong, Nguyen Van;Kim, Donghuyn;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.405-414
    • /
    • 2018
  • The present study investigated the adhesion and corrosion resistance of subsequent electrophoretic paint (E-paint) on "electroless" paint coated AZ31 Mg alloy, which was formed by immersion of AZ31 Mg alloy in E-painting solution. It was found that with increasing immersion time of AZ31 in E-painting solution, the amount of paint deposited by electroless process increased but it decreased the electrochemical equivalent of E-painting process and the adhesion of the subsequent E-paint layer. The E-paint on electroless paint coated AZ31 contained pores with the highest pore density and the largest pore size was obtained on the samples with electroless times of 2 and 5 minutes, respectively. Results of the salt-spray test showed an accelerated growth of blisters over the entire surface of the sample immersed for less than 5 minutes whereas blisters were observed only in the vicinity of the scratch in case of samples treated for 15 and 30 minutes. The E-paint on AZ31 with shorter electroless immersion time in E-painting solution was found to have good adhesion and better corrosion resistance.

Effects of Surface Pretreatment on Deposition and Adhesion of Electrophoretic Paint on AZ31 Mg Alloy

  • Nguyen, Van Phuonga;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.2
    • /
    • pp.72-84
    • /
    • 2017
  • In this work, electrophoretic paint (E-paint) was deposited on AZ31 Mg alloy after four different surface pretreatments: knife abrading, SiC paper abrading, deionized (DI) water immersion and NaOH immersion. The deposition process of E-paint was studied by analyses of voltage-time and current-time curves, amount of deposited paint, current efficiency and surface oxide film resistance and the adhesion of E-paint was examined by tape test before and after immersion in DI water for 500 h at $40$^{\circ}C$. It was found that the induction time for the deposition, the amount of deposited paint and the current efficiency are inversely proportional to the resistances of surface films prepared by different surface pretreatment methods. The electrophoretic painting showed longer inductance time, larger amount of deposited paint and higher current efficiency on the highly conducting surfaces, such as knife-abraded and SiC-abraded surfaces than on the less conducting surfaces, such as DI water-immersed and NaOH-immersed samples. Excellent adhesion was observed on the E-paintings deposited onto knife-abraded and SiC-abraded AZ31 Mg alloy samplesSiC-abraded AZ31 Mg alloy samples.

The Analysis on the VOCs Contents and Ozone Production Contribution of A Marine Paint in Korea (국내 선박용 도료의 VOCs 함량분포 및 오존생성기여도에 관한 연구)

  • Kim, Su Min;Lee, Young Soo;Kang, Kyoung Hee;Yoo, Kyung Seun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.569-576
    • /
    • 2014
  • In this research, a few paints in the shipyard were selected and analyzed for the component and ozone production in marine paint using TVOC and GC/FID, ozone generation index (MIR, POCP) to establish measures of $VOC_s$ effectively. The concentrations of TVOC ranged between approximately 300~400 g/L and 400~500 g/L, respectively and these showed 37% of whole. Our results indicated that the main constituents of marine paints were m,p,oxylene (49%), ethyl benzene (10%), toluene (8%) and 2-propanol (5%). It was also found that xylene concentration have relatively higher impact on ozone generation. The types of paints were also investigated for their potentials. The biggest contributor was the 1 Pack Finish paint. The rest is, in their contributing order, 1 Pack Finish paint, 2 pack Finish paint, Anti-fouling paint, 2 Pack A/C paint, Ballast paint and 1 Pack A/C paint.

A Study on the Flame Resistance Performance and Smoking Characteristics of the Flame-Resistant Paint (방염도료의 방염성능 및 발연특성에 관한 연구)

  • Kim, Hwang-Jin;Lee, Sung-Eun;Oh, Kyu-Hyung
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.78-83
    • /
    • 2009
  • 17 kinds of fire resistant paint which are currently used were painted on the MDF, to find flame resistance performance and smoking characteristics according to principal ingredient and characteristics of fire resistant paint. 45 degree combustion test and smoke density test were conducted to investigate the flame resistance performance and smoking characteristics. According to the 45 degree combustion test, acrylic resin type fire resistant paint showed the most excellent fire resistance performance. And the water soluble fire resistant paint showed better fire resistance performance compare to the solvent soluble paints. Also gloss paint showed better fire resistance performance than the flat paint. Based on the smoke density test, the smoke generation of fire resistant treated specimen of acrylic resin type was least. And the water soluble fire resistant paint generate little smoke than solvent soluble fire resistant paint.

Paint Removal of Airplane & Water Jet Application

  • Xue, Sheng-Xiong;Chen, Zheng-Wen;Ren, Qi-Le;Su, Ji-Xin;Han, Cai-Hong;Pang, lei
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.3
    • /
    • pp.125-129
    • /
    • 2014
  • The paint removal and recoating are the very important process in airplane maintenance. The traditional technology is to use the chemical way corroding the paint with paint remover. For changing the defects, corrosion & pollution & manual working, of the traditional technology, the physical process which removes the paint of airplane with 250MPa/250kW ultra-high pressure rotary water jetting though the surface cleaner installed on the six axes robot is studied. The paint layer of airplane is very thin and close. The contradiction of water jetting paint removal is to remove the paint layer wholly and not damage the surface of airplane. In order to solve the contradiction, the best working condition must be reached through tests. The paint removal efficiency with ultra-high pressure and move speed of not damaged to the surface. The move speed of this test is about 2m/min, and the paint removal efficiency is about $30{\sim}40m^2/h$, and the paint removal active area is 85-90%. No-repeat and no-omit are the base requests of the robot program. The physical paint removal technology will be applied in airplane maintenance, and will face the safety detection of application permission.