• Title/Summary/Keyword: Papyriflavonol A

Search Result 3, Processing Time 0.016 seconds

Fungicidal Effect of Prenylated Flavonol, Papyriflavonol A, Isolated from Broussonetia papyrifera (L.) Vent. Against Candida albicans

  • Sohn, Ho-Yong;Kwon, Chong-Suk;Son, Kun-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1397-1402
    • /
    • 2010
  • Papyriflavonol A (PapA), a prenylated flavonoid [5,7,3',4'-tetrahydroxy-6,5'-di-(${\gamma},{\gamma}$-dimethylallyl)-flavonol], was isolated from the root barks of Broussonetia papyrifera. Our previous study showed that PapA has a broad-spectrum antimicrobial activity against pathogenic bacteria and fungi. In this study, the mode of action of PapA against Candida albicans was investigated to evaluate PapA as an antifungal agent. The minimal inhibitory concentration (MIC) values were 10~25 ${\mu}g/ml$ for C. albicans and Saccharomyces cerevisiae, Gram-negative bacteria (Escherichia coli and Salmonella typhimurium), and Gram-positive bacteria (Staphylococcus epidermidis and Staphylococcus aureus). The kinetics of cell growth inhibition, scanning electron microscopy, and measurement of plasma membrane florescence anisotrophy revealed that the antifungal activity of PapA against C. albicans and S. cerevisiae is mediated by its ability to disrupt the cell membrane integrity. Compared with amphotericin B, a cell-membrane-disrupting polyene antibiotic, the hemolytic toxicity of PapA was negligible. At 10~25 ${\mu}g/ml$ of MIC levels for the tested strains, the hemolysis ratio of human erythrocytes was less than 5%. Our results suggest that PapA could be a therapeutic fungicidal agent having potential as a broad spectrum antimicrobial agent.

Prenylated Flavonoids as Tyrosinase Inhibitors

  • Lee, Nan-Kyoung;Son, Kun-Ho;Chang, Hyeun-Wook;Kang, Sam-Sik;Park, Hae-Il;Heo, Moon-Young;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.27 no.11
    • /
    • pp.1132-1135
    • /
    • 2004
  • In order to find new tyrosinase inhibitors and the effects of prenyl residue on flavonoid molecules, eight prenylated and three synthetic vinylated flavonoids were examined on their inhibitory effect against tyrosinase activity. From the results, kuwanon C, papyriflavonol A, sanggenon D and sophoflavescenol were found to possess the considerable inhibitory activity. Especially, sanggenon D is revealed as a potent inhibitor ($IC_{50}$ =7.3$\mu$ M), compared to the reference compound, kojic acid ($IC_{50}$ =24.8 $\mu$M). However, the prenylation with isoprenyl group or the vinylation to flavonoid molecules did not enhance tyrosinase inhibitory activity.