• Title/Summary/Keyword: Parallel Computing

Search Result 806, Processing Time 0.045 seconds

Parallel Computation Algorithm of Gauss Elimination in Power system Analysis (전력계통해석을 위한 자코비안행렬 가우스소거의병렬계산 알고리즘)

  • 서의석;오태규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.189-196
    • /
    • 1994
  • This paper describes a parallel computing algorithm in Gauss elimination of Jacobian matrix to large-scale power system. The structure of Jacobian matrix becomes different according to ordering method of buses. In sequential computation buses are ordered to minimize the number of fill-in in the triangulation of the Jacobian matrix. The proposed method develops the parallelism in the Gauss elimination by using ND(nested dissection) ordering. In this procedure the level structure of the power system network is transformed to be long and narrow by using end buses which results in balance of computing load among processes and maximization of parallel computation. Each processor uses the sequential computation method to preserve the sqarsity of matrix.

  • PDF

Introduction to general purpose GPU computing (GPU를 이용한 범용 계산의 소개)

  • Yu, Donghyeon;Lim, Johan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.5
    • /
    • pp.1043-1061
    • /
    • 2013
  • Recent advances in computer technology introduce massive data and their analysis becomes important. The high performance computing is one of the most essential part in analysis of massive data. In this paper, we review the general purpose of the graphics processing unit and its application to parallel computing, which has been of great interest in statistics communities.

Optical Pipelined Multi-bus Interconnection Network Intrinsic Topologies

  • d'Auriol, Brian Joseph
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.632-642
    • /
    • 2017
  • Digital all-optical parallel computing is an important research direction and spans conventional devices and convergent nano-optics deployments. Optical bus-based interconnects provide interesting aspects such as relative information communication speed-up or slow-down between optical signals. This aspect is harnessed in the newly proposed All-Optical Linear Array with a Reconfigurable Pipelined Bus System (OLARPBS) model. However, the physical realization of such communication interconnects needs to be considered. This paper considers spatial layouts of processing elements along with the optical bus light paths that are necessary to realize the corresponding interconnection requirements. A metric in terms of the degree of required physical constraint is developed to characterize the variety of possible solutions. Simple algorithms that determine spatial layouts are given. It is shown that certain communication interconnection structures have associated intrinsic topologies.

A proposed parallel processing structure for robot motion control (로봇 운동 제어의 실시간 연산을 위한 병렬처리구조)

  • 고경철;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.1-5
    • /
    • 1988
  • The realization of high quality robot control needs the improvement of computing speed of controller. In this paper, parallel processing method is considered for this purpose. A S/W algorithm for task scheduling is developed first, and then, an appropriate H/W structure is proposed. This scheme is applied to calculate inverse kinematics of PUMA robot. The simulation results show that the computing time when using three 8086/87's is reduced to 4.23 msec compared to 10 msec in case using one 8086/87.

  • PDF

Prediction of Transient Slab Heating Characteristics in a Walking Beam Type of Reheating Furnace

  • Han Sang-Heon;Baek Seung-Wook
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.405-407
    • /
    • 2006
  • A full-scale simulation of steel mill reheating furnace was performed by using parallel computing technology. Turbulent flow as well as chemical reaction is considered and solved in a coupled manner while radiation is also calculated. The movement of slab is taken into account so that a more precise observation of its heating characteristics becomes possible through this numerical analysis.

  • PDF

High-speed simulation for fossil power plants uisng a parallel DSP system (병렬 DSP 시스템을 이용한 화력발전소 고속 시뮬레이션)

  • 박희준;김병국
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.4
    • /
    • pp.38-49
    • /
    • 1998
  • A fossil power plant can be modeled by a lot of algebraic equations and differential equations. When we simulate a large, complicated fossil power plant by a computer such as workstation or PC, it takes much time until overall equations are completely calculated. Therefore, new processing systems which have high computing speed is ultimately needed for real-time or high-speed(faster than real-time) simulators. This paper presents an enhanced strategy in which high computing power can be provided by parallel processing of DSP processors with communication links. DSP system is designed for general purpose. Parallel DSP system can be easily expanded by just connecting new DSP modules to the system. General urpose DSP modules and a VME interface module was developed. New model and techniques for the task allocation are also presented which take into account the special characteristics of parallel I/O and computation. As a realistic cost function of task allocation, we suggested 'simulation period' which represents the period of simulation output intervals. Based on the development of parallel DSP system and realistic task allocation techniques, we cound achieve good efficiency of parallel processing and faster simulation speed than real-time.

  • PDF