• Title/Summary/Keyword: Parallel operation

Search Result 1,244, Processing Time 0.034 seconds

The Operation characteristics of the parallel operation system using the model for parallel operation (병렬운전 모델을 이용한 병렬운전 시스템의 운전 특성)

  • 김성관;김수석;김왕곤
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.157-163
    • /
    • 2002
  • Consideration for parallel operation in a high power system has been increased due to the advantages of parallel operation like as high productivity, simplicity of design, and redundancy of power. This paper discussed the parallel operation of DC-DC Converter, Which Can be used as a high power system, is studied. Based on the small signal model of DC-DC Converter, the simple and exact power stage model of parallel operation system is derived and the parallel operation system using current balance method for the uniform current distribution among the parallel operation system is discussed. To verify the high performance of the proposed DC-DC converter system for parallel operation, the simulation test of the parallel operation, which has 2 Converter modules, is accomplished.

  • PDF

A Study of Voltage Control for Lower Side Parallel Transformer (병렬운전 변압기 전압제어 및 저압축 모선보호방식연구)

  • Yun, Gi-Seob;Baek, Seung-Do;Choi, Hyuck-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.233-236
    • /
    • 2001
  • Parallel operation scheme to several transformers is adopted because of the load increase, economic problem, or load shedding. For the transformer's parallel operation, loads proportional to each transformer's capacity must be allotted, and circulation currents must be limited as much as without causing any problem in a real operation. But, both transformers in parallel operation can be tripped when either faults at lower voltage side of a transformer or faults in a bus occurs. Therefore, parallel operation scheme to distribution transformers in Korea is not adopted in a normal state but only when loaded or load-shedded. These are due to the insufficiency of the construction in communication network and AVR scheme. Besides that, those are because bus bar protection scheme to lower voltage side of a transformer is not applied. In spite of enormous initial investment costs, advanced countries take so much account of power system reliability and stable supply that they adopt the parallel operation scheme in a normal state. One of the problems in parallel operation is the overheat of transformers due to the excessive circulation currents. This paper presents the scheme that controls voltages between both transformers using circulation currents that occurs in parallel operation.

  • PDF

The Analysis of Parallel Operating Characteristics for DC-DC Converter Using the Parallel Operation Model (병렬운전 모델을 이용한 DC-DC 컨버터의 병렬운전 특성해석)

  • Kim, Soo-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.174-182
    • /
    • 2004
  • Consideration for parallel operation in a high power system has been increased due to the advantages of parallel operation like as high productivity, simplicity of design, and redundancy of power. Based on the small signal model of DC-DC Converter, the simple and exact power stage model of parallel operation system is derived and the parallel operation system using current balance method for the uniform current distribution among the parallel operation system is proposed. Using Simulation programs, which consists of nonidentical Converter modules and changes the position of master and slave automatically, the current distribution error is kept within the limit in the parallel operation system. To verify the high performance of the proposed Converter system for parallel operation, the parallel operation test, which has 2 Converter modules of 1 kW, is accomplished. Also, the simulation result is good agreement with the experiment result in the transient and starting characteristics.

The Study of the IGBT and Stack Parallel Operation for the 1.5MVA Medium Power Inverter (1.5MVA급 중용량 인버터용 IGBT 및 Stack 병렬 운전 연구)

  • Park Geon-Tae;Jung Ki-Chan;Kim Yeon-Dal;Jung Myung-Kil;Kim Du-Sik
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.402-405
    • /
    • 2004
  • In this paper, the parallel operation of the IGBT and power stack for easy capacity enlargement series in the medium power capacity inverter system of the 660V voltage class is described. The parallel operation of the IGBT and power stack for 1.5MVA medium power inverter system's design is applied. The results of the parallel operation are described in this paper. The designed stack capacity for parallel operation is 800kVA class. For 1.5MVA inverter system, the 800kVA stack is applied with 2 parallel configurations. The 800kVA stack is designed with 3 parallel configurations of the IGBT Module. In this paper, the feasibility for easy capacity enlargement series in the medium power inverter by applying the parallel operation of the IGBT and power stack is verified. The experimental results show the good characteristics for the parallel operation of the IGBT and power stack.

  • PDF

A Master and Slave Control Strategy for Parallel Operation of Three-Phase UPS Systems with Different Ratings (다른 정격용량을 가진 3상 UPS 시스템의 병렬운전을 위한 주종제어 기법)

  • 이우철;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.341-349
    • /
    • 2004
  • A parallel operation of Uninterruptible Power Supply(UPS) systems is used to increase power capacity of the system or to secure higher reliability at critical loads. In the conventional parallel operation, the load-sharing control to maintain the current balance is the most important, since the load-sharing is very sensitive to discord between components of each module, amplitude/phase difference, line impedance, output LC filter, and so on. To solve these problems various control algorithms are researching. However, these methods cannot apply to the different ratings of UPS. In the case, master and slave control algorithm for parallel operation is adequate. However, if the UPS ratings are different, the value of passive filters L, C is different, and it affects the sharing of current. This paper presents general problems of conventional parallel operation systems, and control strategy for parallel operation with different ratings. The validity of the proposed control strategy is investigated through simulation and experiment in the parallel operation system with two 3-phase UPS systems.

Master-Slave type DC-DC Converters Parallel Operation by ZCT method (ZCT방식의 master-slave형 DC-DC컨버터 병렬운전)

  • 박상은;송승찬;진정태;이기홍;성세진
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.655-658
    • /
    • 1999
  • In this paper, Parallel operation of two DC-DC converters which we have ever done before need two CTs to do load current sharing. However, we have proposed a new method called ZCT method that can share load current with only a CT as doing parallel operation two converters with same converter capacity. To confirm parallel performance by a proposed DC-DC converter parallel operation method, we have done computer simulation and experiment. It is certain that we have showed to achieve two converters current sharing performance efficiently through simulation and experiment at result.

  • PDF

Design and Analysis for Parallel Operation of Power MOSFETs Using SPICE (SPICE를 이용한 MOSFET의 병렬운전 특성해석 및 설계)

  • 김윤호;윤병도;강영록
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.251-258
    • /
    • 1994
  • To apply the Power MOSFET to the high powerd circuits, the parallel operation of the Power MOSFET must be considered because of their low power rating. This means, in practical applications, design methods for the parallel operations are required. However, it is very difficult to investigate the problem of parallel operations by directly changing the internal parameters of the MOSFET. Thus, in this paper, the effects of internal parameters for the parallel operation are investigated using SPICE program which is often used and known that the program is very reliable. The investigation results show that while the gate resistance and gate capacitances are the parameters which affect to the dynamic switching operations, the drain and source resistances are the parameters which affect to the steady-state current unbalances. Through this investigation, the design methods for the parallel operation of the MOSFET are suggested, which, in turn, contributes to the practical use of Power MOSFETs.

  • PDF

The Parallel Operation Control of Static UPSs (정지형 UPS의 병렬운전 제어)

  • Min, Byeong-Gwon;Won, Chung-Yun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.7
    • /
    • pp.363-368
    • /
    • 1999
  • The parallel operation system of multiple uninterruptible power supplies(UPSs) is used to increase power capacity of the system or to secure higher reliability at critical loads. In the parallel operation of the two UPSs, the load-sharing control to maintain the current balance between them is a key technique. Because a UPS has low output impedance and quick response characteristics, in case of an unbalanced load inverter output current changes very rapidly and thereby can instantaneously reach an overload condition. In this study, high precise load-sharing controller is proposed and implemented for the parallel operation system of two UPSs with low impedance characteristics and this controller controls the frequency and the voltage to minimize the active power component and the reactive power component which are gotten from the current difference between two UPSs. And then a good performance of the proposed method is verified by experiments in the parallel operation system with two 40KVA UPSs.

  • PDF

A Harmonic Circulation Current Reduction Method for Parallel Operation of UPS with a Three-Phase PWM Inverter

  • Kim Kyung-Hwan;Kim Wook-Dong;Hyun Dong-Suk
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.160-165
    • /
    • 2005
  • In a parallel operation of UPS, there are two types of circulating currents between UPS. One is the low order circulating current with a fundamental frequency caused by the amplitude and phase differences of UPS output voltages, and the other is the harmonic circulating current with PWM switching frequency caused by non-synchronized PWM waveforms among UPS. The elimination of the low order circulating current is essential for optimal load sharing in parallel operations of UPS, which can be accomplished by the phase and magnitude control at each UPS. The harmonic circulating current may cause troubles and deteriorate in performance of the controller for optimal load sharing in parallel operation of UPS. This paper presents a PWM synchronizing method to eliminate the harmonic circulation current in parallel operation of UPS. The effectiveness of the proposed scheme has been investigated and verified through experiments by a 50kVA UPS.

Power Control Method for Reducing Circulating Current in Parallel Operation of DC Distribution System

  • Shin, Soo-Cheol;Lee, Hee-Jun;Kim, Young-Ho;Lee, Jung-Hyo;Lee, Taeck Kie;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1212-1220
    • /
    • 2013
  • In general, for a large power system like DC distribution system for buildings, several power converters are modularized for parallel operation. However, in parallel operation, inconsistency of parameters in each module causes circulating current in the whole system. Circulating current is directly related to loss, and, therefore, it is most important for the safety of the power system to supply the suitable current to each module. This paper proposes a control method to reduce circulating current caused during parallel operation. Accordingly, the validity of parallel operation system including response characteristics and normal state was verified by simulation and experiment result.