• Title/Summary/Keyword: Parametric Study

Search Result 3,681, Processing Time 0.039 seconds

FE Model Based Parametric Study Support System

  • Jang, Beom-Seon
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.4
    • /
    • pp.7-19
    • /
    • 2008
  • In preliminary ship design, a parametric study is a more realistic way to explore design space and analyze design problem than an optimization technique due to time-consuming computational work or a difficulty in incorporating all constraints into the optimization formulation. In the parametric study, feasible alternatives are examined in various aspects; the best one can be selected. Among the aspects, the strength assessment by FE analysis is an essential process in the ship design. This paper proposes a system to facilitate a parametric study for FE model based on design of experiment (DOE). It works on a FE pre-processor environment and assists a user to define a parametric study by interacting with FE model. It also provides an interface module with a FE solver in order to control the input file and extract predefined FE results from the output file. Based on the proposed system, a better understating and a better design are expected to be achieved.

Study on Numerical Sensitivity and Uncertainty in the Analysis of Parametric Roll (파라메트릭 횡동요 수치해석의 민감도 및 불확실성에 대한 연구)

  • Park, Dong-Min;Kim, Tae-Young;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.60-67
    • /
    • 2012
  • This study considers the numerical analysis on parametric roll for container ships. As a method of numerical simulation, an impulse-response-function approach is applied in time domain. A systematic study is carried out for the parametric roll of two container ships, particularly observing the sensitivity of computational results to some parameters which can affect the analysis of parametric roll. The parameters to be considered are metacentric height (GM), simulation time window, and the discretization of wave spectrum. Based on the result of parametric roll simulation, numerical sensitivity and uncertainty in computational analysis are discussed.

Parametric pitch instability investigation of Deep Draft Semi-submersible platform in irregular waves

  • Mao, Huan;Yang, Hezhen
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • Parametric pitch instability of a Deep Draft Semi-submersible platform (DDS) is investigated in irregular waves. Parametric pitch is a form of parametric instability, which occurs when parameters of a system vary with time and the variation satisfies a certain condition. In previous studies, analyzing of parametric instability is mainly limited to regular waves, whereas the realistic sea conditions are irregular waves. Besides, parametric instability also occurs in irregular waves in some experiments. This study predicts parametric pitch of a Deep Draft Semi-submersible platform in irregular waves. Heave motion of DDS is simulated by wave spectrum and response amplitude operator (RAO). Then Hill equation for DDS pitch motion in irregular waves is derived based on linear-wave theory. By using Bubnov-Galerkin approach to solve Hill equation, the corresponding stability chart is obtained. The differences between regular-waves stability chart and irregular-waves stability chart are compared. Then the sensitivity of wave parameters on DDS parametric pitch in irregular waves is discussed. Based on the discussion, some suggestions for the DDS design are proposed to avoid parametric pitch by choosing appropriate parameters. The results indicate that it's important and necessary to predict DDS parametric pitch in irregular waves during design process.

The Parametric Fashion Design Using Grasshopper -Focused on Skirt Silhouette

  • Jung Min, Kim;Jung Soo, Lee
    • Journal of Fashion Business
    • /
    • v.26 no.6
    • /
    • pp.32-46
    • /
    • 2022
  • The purpose of this study is to explore a three-dimensional (3D) simulation of skirt shape concepts by manipulating circumferences and lengths via parametric design in the fashion design concept stage. This study also intends to propose a modeling method that can judge and transform the shape through immediate parameter adjustment. We looked at cases that utilized parametric design in other fields of fashion design, reviewed and analyzed the variables used in each study, and constructed parameters suitable to implement skirt fashion design. The traditional design elements required for skirt design, namely waist and hip circumferences, were set as variables in this study. The parametric design was developed to generate ideas of two skirt silhouettes (tight and flared) and three lengths (mini, knee-length, and maxi). To apply the skirt design implemented through variables to the actual 3D human shape, the shape data of women in their 20s and 30s were randomly selected from the 5th human data of Size Korea. Skirt design silhouette modeling was performed by adjusting the variable values according to body type. Parametric design has the potential to help develop design ideas in the field of fashion design, considering the method and characteristics of parameters of the variety of variables and rapid modification. Furthermore, if systematic research on variables and options among fashion design elements is conducted, the possibility of converging them into customization or co-design fashion design processes could be confirmed.

Free vibration of symmetrically laminated quasi-isotropic super-elliptical thin plates

  • Altunsaray, Erkin
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.493-508
    • /
    • 2018
  • Free vibration analysis of super-elliptical composite thin plates was investigated. Plate is formed by symmetrical quasi-isotropic laminates. Rayleigh-Ritz method was used for parametric analysis based on the governing differential equations of Classical Laminated Plate Theory (CLPT). Simply supported and clamped boundary conditions at the periphery of plates were considered. Parametric study was performed for the effect of different lamination type, aspect ratio, thickness and super-elliptical power on natural frequencies. Convergence study and validation of isotropic case were achieved. A number of design parameters like different dimensions, structure systems, panel sizes, panel thicknesses, lamination sequences, boundary conditions and loading conditions must be considered in the production of composite ships. The number of possible combinations practically may be so high that a parametric study should be carried out in order to determine the optimum design parameters rapidly during the preliminary design stage. The use of Rayleigh-Ritz method could make this parametric study possible. Thereby it might be decreasing the consumption of time, material and labor. Certain results for some different super-elliptical powers presented in tabulated form in Appendix for designers as well.

A Study on the Effects of Exitation Voltage Waveforms on the Performances of Parametric Transformer (여자전압의 파형에 따른 Parametric Transformer의 특성)

  • Woo, Jung-In;Jung, Kee-Wha
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.706-709
    • /
    • 1992
  • This paper deals with the operation of a parametric transformer through the normalization of system equations. Based on these equations, the effects of excitation voltage waveforms on the performances of the parametric transformer are analyzed.

  • PDF

Directional Characteristics of Parametric Loudspeakers in Near-field (파라메트릭 스피커의 근접음장 방향성 특성연구)

  • Ju, Hyeong-Sick;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.545-550
    • /
    • 2005
  • A parametric loudspeaker is a device to generate highly directional sound using ultrasounds. The parametric loudspeaker could be used to focus sound in a limited space, so it is important to study the characteristics of the parametric loudspeaker in near-field. Mechanism of the audible sound generation in the parametric loudspeaker is explained by nonlinear interaction of the ultrasounds and is modeled as KZK equation, the nonlinear wave equation which contains attenuation, nonlinearity and diffraction. To measure the directional characteristics of the parametric loudspeaker precisely, a method to reduce the spurious signal which taints the measured signal was invented. With the method, directivity patterns of the parametric loudspeaker were measured and compared to the approximated solution and piston sources.

  • PDF

Parametric Empirical Bayes Estimators with Item-Censored Data

  • Choi, Dal-Woo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.261-270
    • /
    • 1997
  • This paper is proposed the parametric empirical Bayes(EB) confidence intervals which corrects the deficiencies in the naive EB confidence intervals of the scale parameter in the Weibull distribution under item-censoring scheme. In this case, the bootstrap EB confidence intervals are obtained by the parametric bootstrap introduced by Laird and Louis(1987). The comparisons among the bootstrap and the naive EB confidence intervals through Monte Carlo study are also presented.

  • PDF

Study on novel hierarchical parametric stereo coding method for Multichannel audio signal (멀티채널 오디오 신호의 계층적 코딩이 가능한 파라메트릭 스테레오 코딩 방법에 대한 연구)

  • Moon, Han-Gil
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.875-876
    • /
    • 2008
  • Parametric stereo coding is a technique to efficiently code a stereo audio signal as a monaural signal plus small amount of parametric overhead to describe the stereo image. The stereo properties are analyzed, encoded, and reinstated in a decoder according to spatial psycho-acoustical principles. However, coding of multichannel audio signal using parametric stereo still requires considerable bit-rate. In this paper, enhanced parametric stereo coding for multichannel audio signal is proposed.

  • PDF

A Parametric design study for free-formed super tall building using BIM (비정형 초고층 빌딩의 Parametric Design을 위한 BIM 활용에 관한 연구)

  • Kim, Hyeong-Il
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.1
    • /
    • pp.109-118
    • /
    • 2012
  • The Purpose of this study is to develop a design process of free-formed super tall buildings with parametric design approach using BIM. Before BIM tools like Revit was developed, it is considered as very time consuming process and requires extensive efforts and costs for making free-formed super tall building modeling. Current trends of free-formed super tall building are for proofing city's economic strength and symbol. New digital tools have been developed and used for pursuing many design methods for building design. In this study, BIM based Parametric design approach is studied to seek for possibility of generating free-formed super tall building fast, easily, and accurately.