• Title/Summary/Keyword: Parametric Study

Search Result 3,682, Processing Time 0.041 seconds

ASSESSMENT OF THE SAFETY OF ULCHIN NUCLEAR POWER PLANT IN THE EVENT OF TSUNAMI USING PARAMETRIC STUDY

  • Kim, Ji-Young;Kang, Keum-Seok
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.175-186
    • /
    • 2011
  • Previous evaluations of the safety of the Ulchin Nuclear Power Plant in the event of a tsunami have the shortcoming of uncertainty of the tsunami sources. To address this uncertainty, maximum and minimum wave heights at the intake of Ulchin NPP have been estimated through a parametric study, and then assessment of the safety margin for the intake has been carried out. From the simulation results for the Ulchin NPP site, it can be seen that the coefficient of eddy viscosity considerably affects wave height at the inside of the breakwater. In addition, assessment of the safety margin shows that almost all of the intake water pumps have a safety margin over 2 m, and Ulchin NPP site seems to be safe in the event of a tsunami according to this parametric study, although parts of the CWPs rarely have a margin for the minimum wave height.

A Study on the Gradual Differentiation in Parametric Design (패러매트릭 디자인에서의 점진적 조형특성 연구)

  • Kim, Yong-Hak;Ahn, Seong-Mo
    • Korean Institute of Interior Design Journal
    • /
    • v.27 no.2
    • /
    • pp.175-185
    • /
    • 2018
  • The purpose of this study is to analyze the concept of 'Gradual Differentiation' in parametric design in terms of pure model logic and thus describe the distinctive feature from the previous design method. To meet the purpose, it explores external cases like gradual factor identified in natural phenomenon and artworks and define the inherent model principles into "Self-similarity', "Correlation', and 'Temporality' by examining these features in terms of algorithm. Meanwhile, it identified the principle of gradual model representation in parametric design within a single system called 'Attractor System' by applying these three concepts into specific methods of parametric design, and by interpreting the logical structure through the association among 'Attractor', 'Field', and 'Differentiation'. The creative utilization of parameter shows that gradual model process in parametric design does not mean a passive "conversion process" merely replacing natural parameter with algorithm; rather, it refers to an active "generating process" creating new meanings and value. By continuing this process of conceptual understanding and insight, creative perspective and practical ability to interpret parameter can be improved.

Analysing the Determinants of Company R&D Investment Using a Semi-parametric Estimation Method (기업의 R&D 투자 결정요인 분석 - 준모수적 추정법을 적용하여 -)

  • 유승훈
    • Journal of Korea Technology Innovation Society
    • /
    • v.6 no.3
    • /
    • pp.279-297
    • /
    • 2003
  • The purpose of this paper is to analyze the determinants of company R&D investment with zero observations by using the data of R&D Scoreboard published by Ministry of Science and Technology(2002). Conventional parametric approach to dealing with zero investments is not robust to heteroscedastic and/or non-normal error structure. Thus, this study applies symmetrically trimmed least squares(STLS) estimation as a semi-parametric approach to dealing with zero R&D investments. The result of specification test indicates the semi-parametric approach outperforms the parametric approach significantly. Moreover, the results of the study provide various implications as summarized below. The R&D investment of IT company is larger than that of non-IT company. The R&D investment has a positive relation to foreigners' investment ratio. The higher degree of financial self-reliance is, the larger the R&D investment is. Firm size variables such as sales amount and the number of workers are positively related to R&D investment. The sales elasticity of R&D investment is larger than one. However, the workers elasticity of R&D investment is smaller than one.

  • PDF

A Comparison on the Reproducibility of Parametric Bodies Used in the Virtual Garment System

  • Choi, Hee Eun;Nam, Yun Ja;Kim, Hye Suk
    • Fashion & Textile Research Journal
    • /
    • v.16 no.2
    • /
    • pp.266-274
    • /
    • 2014
  • Parametric bodies reproduce the actual shape of human body parts and should be convenient for general users to change size to judge the visual fit of clothes on-line. In this study, three parametric bodies(i.e. I, C, D ) were compared to verify the accuracy of the provided body dimensions and reproducibility to a target model. To compare reproducibility, the 20s female standard virtual model developed for an apparel industry by Korean agency for technology and standards is used. The investigation of existing parameters showed that the numbers and kinds of parameters provided by each program were different with some errors in notation; in addition, some of virtual body dimensions went beyond the maximum allowable error. The result of changing each parametric body to the 20s female standard body showed that D, C, I in order produced better reproducibility for body dimensions. There were different levels of protrusion and concavity in the virtual cross sections and virtual longitudinal sections despite the small differences in body dimensions and cross sectional areas; in addition, some parametric body was not bilateral symmetry. The results of this study can be used as basic information in the standardization of a virtual model used in a virtual garment program.

Multi-level approach for parametric roll analysis

  • Kim, Tae-Young;Kim, Yong-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.53-64
    • /
    • 2011
  • The present study considers multi-level approach for the analysis of parametric roll phenomena. Three kinds of computation method, GM variation, impulse response function (IRF), and Rankine panel method, are applied for the multi-level approach. IRF and Rankine panel method are based on the weakly nonlinear formulation which includes nonlinear Froude-Krylov and restoring forces. In the computation result of parametric roll occurrence test in regular waves, IRF and Rankine panel method show similar tendency. Although the GM variation approach predicts the occurrence of parametric roll at twice roll natural frequency, its frequency criteria shows a little difference. Nonlinear roll motion in bichromatic wave is also considered in this study. To prove the unstable roll motion in bichromatic waves, theoretical and numerical approaches are applied. The occurrence of parametric roll is theoretically examined by introducing the quasi-periodic Mathieu equation. Instability criteria are well predicted from stability analysis in theoretical approach. From the Fourier analysis, it has been verified that difference-frequency effects create the unstable roll motion. The occurrence of unstable roll motion in bichromatic wave is also observed in the experiment.

Parametric numerical study of wind barrier shelter

  • Telenta, Marijo;Batista, Milan;Biancolini, M.E.;Prebil, Ivan;Duhovnik, Jozef
    • Wind and Structures
    • /
    • v.20 no.1
    • /
    • pp.75-93
    • /
    • 2015
  • This work is focused on a parametric numerical study of the barrier's bar inclination shelter effect in crosswind scenario. The parametric study combines mesh morphing and design of experiments in automated manner. Radial Basis Functions (RBF) method is used for mesh morphing and Ansys Workbench is used as an automation platform. Wind barrier consists of five bars where each bar angle is parameterized. Design points are defined using the design of experiments (DOE) technique to accurately represent the entire design space. Three-dimensional RANS numerical simulation was utilized with commercial software Ansys Fluent 14.5. In addition to the numerical study, experimental measurement of the aerodynamic forces acting on a vehicle is performed in order to define the critical wind disturbance scenario. The wind barrier optimization method combines morphing, an advanced CFD solver, high performance computing, and process automaters. The goal is to present a parametric aerodynamic simulation methodology for the wind barrier shelter that integrates accuracy and an extended design space in an automated manner. In addition, goal driven optimization is conducted for the most influential parameters for the wind barrier shelter.

Theoretical rotational stiffness of the flexible base connection based on parametric study via the whale optimization algorithm

  • Mahmoud T. Nawar;Ehab B. Matar;Hassan M. Maaly;Ahmed G. Alaaser;Osman Hamdy
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.43-52
    • /
    • 2023
  • This paper handles the results of an extensive parametric study on the rotational stiffness of the flexible base connection using ABAQUS program. The results of the parametric study show the relation between the applied moment and the relative rotation for 96 different base connections. The configurations of the studied connections considered different numbers, diameters, and spacing of the anchor bolts along with different thicknesses of the base plate to investigate the effect of these parameters on the rotational stiffness behavior. The results of the previous parametric research used through the whale optimization algorithm (WOA) to detect different equation formulation of the moment-rotation (M-Ɵr) equation to detect optimum equation simulates the general nonlinear rotational behavior of the flexible base connection considering all variables used in the parametric study. WOA is a relatively new promising algorithm, which is used in different types of optimization problems. For more verification, the classical genetic algorithm (GA) is used to make a comparison with WOA results. The results show that WOA is capable of getting an optimum equation of the M-Ɵr relation, which can be used to simulate the actual rotational stiffness of the flexible base connections. The rotational stiffness at H/150 can be calculated using WOA (1) method and be used as a design aid for engineering design.

A Study on the Curved Form Generation Methodology of the Brick Architecture by Stretcher Bond - Focused on the Parametric Design Process - (길이쌓기에 따른 벽돌건축의 곡면형태 생성방법에 관한 연구 - 파라메트릭 디자인 프로세스를 중심으로 -)

  • Cho, Heayon;Lee, Hyunsoo
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.6
    • /
    • pp.163-171
    • /
    • 2017
  • Brick is not only aesthetically beautiful and emotional material, but also eco-friendly and good building commodity for human health. Nonetheless, the use of brick has declined, due to the difficulty of building high-rise buildings and the limitation of the free form implementation. However, modern society is increasingly interested in environmentally friendly finishing materials for solving environmental problems. From this point of view, the brick architecture is being reexamined as a material to improve the living environment and to provide comfort without destroying nature. In addition, the development of digital technology enables the implementation of various types of masonry method and curved forms. Parametric design is one of the ways to realize the curved forms and various architectural expressions for brick architecture. In this background, the purpose of this study is to develop algorithms that can easily generate curved brick walls through parametric design, enable various pattern designs, and respond to real-time feedback. The details of the study are as follows. First of all, we examine organic architecture, the trend of brick architecture, and the concept of parametric design. Secondly, In order to generate curved surface with complex curvature, major planning factors affecting form generation are examined. Finally, we develop a parametric design method that consists of generating a curved surface for brick arrangement, implementing a parametric algorithm, and generating a curved form using bricks. Consequentially, we propose an algorithm that can maximize the use of ready-made bricks without using cut bricks to design curved walls and present efficient and economical design alternatives.

Behavior of Mechanically Stabilized Earth Retaining Walls with Different Construction Sequence (시공과정에 따른 보강토 옹벽의 거동 특성)

  • 유충식;이광문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.473-480
    • /
    • 1999
  • This paper presents the results of a parametric study on the behavior of mechanically stabilized earth retaining wall. It has been recognized that the currently available design guidelines, which is base on the limit equilibrium approach, cannot properly account the interaction effect between the components, construction sequence, and foundation settlement which may impose a significant influence on the wall behavior. A parametric study using finite element analysis was performed to investigate the behavior of MSE wall under different construction conditions and the applicability of the current design approach. In the parametric analysis, the effects of the construction sequence, the surcharge, and the foundation stiffness were studied and a detailed finite element modeling for various components of the system were employed. The results, such as wall displacement and earth pressure distributions, reinforcement forces, vertical stress distribution were then thoroughly analyzed to investigate the effect of construction details on the wall behavior.

  • PDF

Parametric Estimation of a Renewal Function

  • Jeong, Hai-Sung;Na, Myung-Hwan
    • International Journal of Reliability and Applications
    • /
    • v.1 no.1
    • /
    • pp.81-87
    • /
    • 2000
  • One of the most important quantities in reliability theory is the expected number of renewals of a system during a given interval. This quantity, the renewal function, is used to determine the optimal preventive maintenance policy and to estimate the cost of a warranty. In this paper we study a parametric approach for a renewal function. The simulation study is presented to compare the relative performance of the introduced estimators of a renewal function. And we show that the proposed parametric estimator performs well.

  • PDF