• Title/Summary/Keyword: Parametric fault

Search Result 47, Processing Time 0.024 seconds

Test-Generation-Based Fault Detection in Analog VLSI Circuits Using Neural Networks

  • Kalpana, Palanisamy;Gunavathi, Kandasamy
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.209-214
    • /
    • 2009
  • In this paper, we propose a novel test methodology for the detection of catastrophic and parametric faults present in analog very large scale integration circuits. An automatic test pattern generation algorithm is proposed to generate piece-wise linear (PWL) stimulus using wavelets and a genetic algorithm. The PWL stimulus generated by the test algorithm is used as a test stimulus to the circuit under test. Faults are injected to the circuit under test and the wavelet coefficients obtained from the output response of the circuit. These coefficients are used to train the neural network for fault detection. The proposed method is validated with two IEEE benchmark circuits, namely, an operational amplifier and a state variable filter. This method gives 100% fault coverage for both catastrophic and parametric faults in these circuits.

  • PDF

Winding Turn-to-Turn Faults Detection of Fault-Tolerant Permanent-Magnet Machines Based on a New Parametric Model

  • Liu, Guohai;Tang, Wei;Zhao, Wenxiang
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.23-30
    • /
    • 2013
  • This paper proposes a parametric model for inter-turn fault detection in a fault-tolerant permanent-magnet (FTPM) machine, which can predict the effect of the short-circuit fault to various physical quantity of the machine. For different faulty operations, a new effective stator inter-turn fault detection method is proposed. Finally, simulations of vector-controlled FTPM machine drives are given to verify the feasibility of the proposed method, showing that even single-coil short-circuit fault could be exactly detected.

Band Fault Modelling Based on specification for the Time Domain Test of RFIC (RF 집적회로의 시간영역 테스팅을 위한 사양기반 구간고장모델링)

  • Kim, Kang-Chul;Han, Seok-Bung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.299-308
    • /
    • 2008
  • This paper proposes a new design specification-based band fault modelling technique that can test design specification in a time domain. The band fault model is defined and the conditions of band fault model are gained as normal operation regions are defined. And the conditions of band fault model are used in a 5.25GHz low noise amplifier, then 9 band fault models that can detect hard and parametric faults of active and passive devices are obtained.

Fault Tolerant Control Design Using IMM Filter with an Application to a Flight Control System (IMM 필터를 이용한 고장허용 제어기법 및 비행 제어시스템에의 응용)

  • 김주호;황태현;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.87-87
    • /
    • 2000
  • In this paper, an integrated design of fault detection, diagnosis and reconfigurable control tot multi-input and multi-output system is proposed. It is based on the interacting multiple model estimation algorithm, which is one of the most cost-effective adaptive estimation techniques for systems involving structural and/or parametric changes. This research focuses on the method to recover the performance of a system with failed actuators by switching plant models and controllers appropriately. The proposed scheme is applied to a fault tolerant control design for flight control system.

  • PDF

Virtual ground monitoring for high fault coverage of linear analog circuits

  • Roh, Jeongjin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.226-232
    • /
    • 2002
  • This paper explains a technique to improve the fault coverage of oscillation-test [1-5] for linear analog circuits. The transient behavior of the virtual ground is monitored during oscillation to extract information of the circuit. The limitation of the oscillation-test is analyzed, and an efficient signature analysis technique is proposed to maximize the fault coverage. The experimental result proves that the parametric fault coverage can be significantly increased by the proposed technique.

H_/H Sensor Fault Detection and Isolation of Uncertain Time-Delay Systems

  • Jee, Sung Chul;Lee, Ho Jae;Kim, Do Wan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.313-323
    • /
    • 2014
  • Sensor fault detection and isolation problems subject to H_/$H_{\infty}$, performance are concerned for linear time-invariant systems with time delay in a state and parametric uncertainties. To that end, a model-based observer bank approach is pursued. The design conditions for both continuous- and discrete-time cases are formulated in terms of matrix inequalities, which are then converted to the problems solvable via an algorithm involving convex optimization.

Strain demand prediction method for buried X80 steel pipelines crossing oblique-reverse faults

  • Liu, Xiaoben;Zhang, Hong;Gu, Xiaoting;Chen, Yanfei;Xia, Mengying;Wu, Kai
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.321-332
    • /
    • 2017
  • The reverse fault is a dangerous geological hazard faced by buried steel pipelines. Permanent ground deformation along the fault trace will induce large compressive strain leading to buckling failure of the pipe. A hybrid pipe-shell element based numerical model programed by INP code supported by ABAQUS solver was proposed in this study to explore the strain performance of buried X80 steel pipeline under reverse fault displacement. Accuracy of the numerical model was validated by previous full scale experimental results. Based on this model, parametric analysis was conducted to study the effects of four main kinds of parameters, e.g., pipe parameters, fault parameters, load parameter and soil property parameters, on the strain demand. Based on 2340 peak strain results of various combinations of design parameters, a semi-empirical model for strain demand prediction of X80 pipeline at reverse fault crossings was proposed. In general, reverse faults encountered by pipelines are involved in 3D oblique reverse faults, which can be considered as a combination of reverse fault and strike-slip fault. So a compressive strain demand estimation procedure for X80 pipeline crossing oblique-reverse faults was proposed by combining the presented semi-empirical model and the previous one for compression strike-slip fault (Liu 2016). Accuracy and efficiency of this proposed method was validated by fifteen design cases faced by the Second West to East Gas pipeline. The proposed method can be directly applied to the strain based design of X80 steel pipeline crossing oblique-reverse faults, with much higher efficiency than common numerical models.

Robust Fault-Tolerant Control for Robotic Systems

  • Shin, Jin-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.513-518
    • /
    • 1998
  • In this paper, a robust fault-tolerant control scheme for robot manipulators overcoming actuator failures is presented. The joint(or actuator) fault considered in this paper is the free-swinging joint failure and causes the loss of torque on a joint. The presented fault-tolerant control framework includes a normal control with normal(non-failed) operation, a fault detection and a fault-tolerant control to achieve task completion. For both no uncertainty case and uncertainty case, a stable normal con-troller and an on-line fault detection scheme are presented. After the detection and identification of joint failures, the robot manipulator becomes the underactuated robot system with failed actuators. A robust adaptive control scheme of robot manipulators with the detected failed-actuators using the brakes equipped at the failed(passive) joints is proposed in the presence of parametric uncertainty and external disturbances. To illustrate the feasibility and validity of the proposed fault-tolerant control scheme, simulation results for a three-link planar robot arm with a failed joint are presented.

  • PDF

Bearing fault detection through multiscale wavelet scalogram-based SPC

  • Jung, Uk;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.377-395
    • /
    • 2014
  • Vibration-based fault detection and condition monitoring of rotating machinery, using statistical process control (SPC) combined with statistical pattern recognition methodology, has been widely investigated by many researchers. In particular, the discrete wavelet transform (DWT) is considered as a powerful tool for feature extraction in detecting fault on rotating machinery. Although DWT significantly reduces the dimensionality of the data, the number of retained wavelet features can still be significantly large. Then, the use of standard multivariate SPC techniques is not advised, because the sample covariance matrix is likely to be singular, so that the common multivariate statistics cannot be calculated. Even though many feature-based SPC methods have been introduced to tackle this deficiency, most methods require a parametric distributional assumption that restricts their feasibility to specific problems of process control, and thus limit their application. This study proposes a nonparametric multivariate control chart method, based on multiscale wavelet scalogram (MWS) features, that overcomes the limitation posed by the parametric assumption in existing SPC methods. The presented approach takes advantage of multi-resolution analysis using DWT, and obtains MWS features with significantly low dimensionality. We calculate Hotelling's $T^2$-type monitoring statistic using MWS, which has enough damage-discrimination ability. A bootstrap approach is used to determine the upper control limit of the monitoring statistic, without any distributional assumption. Numerical simulations demonstrate the performance of the proposed control charting method, under various damage-level scenarios for a bearing system.

Stabilization of Power Systems with a Sliding Control Using Fuzzy Estimation of Bounding Function (전력계통 안정화를 위한 퍼지 유계함수 추정을 이용한 슬라이딩 제어)

  • Park, Young-Hwan;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.875-879
    • /
    • 1998
  • A fault on the transmission line results in the variation of reactance and parametric uncertainties in the power system dynamics. In this case, we need a robust control to cope with these uncertainties. A sliding mode control, a sort of robust control, is known to be robust to parametric or state-dependent uncertainties if the bounding function of uncertain terms is determined a priori. However, in general, we can not readily determine the bounding function for the complex systems. Hence, in this paper we introduce a fuzzy system which can estimate the bounding function in relatively simple way. By the use of the proposed fuzzy system, determination of bounding function is made easier. We applied the proposed scheme to the stabilization of power system under the sudden fault on the transmission lines. The simulation result verifies the effectiveness of the scheme.

  • PDF