• 제목/요약/키워드: Pareto optimization

검색결과 249건 처리시간 0.027초

파레토 인공생명 최적화 알고리듬의 제안 (Development of Pareto Artificial Life Optimization Algorithm)

  • 송진대;양보석
    • 대한기계학회논문집A
    • /
    • 제30권11호
    • /
    • pp.1358-1368
    • /
    • 2006
  • This paper proposes a Pareto artificial life algorithm for solving multi-objective optimization problems. The artificial life algorithm for optimization problem with a single objective function is improved to handle Pareto optimization problem through incorporating the new method to estimate the fitness value for a solution and the Pareto list to memorize and to improve the Pareto optimal set. The proposed algorithm was applied to the optimum design of a journal bearing which has two objective functions. The Pareto front and the optimal solution set for the application were presented to give the possible solutions to a decision maker or a designer. Furthermore, the relation between linearly combined single-objective optimization problem and Pareto optimization problem has been studied.

Weighted sum Pareto optimization of a three dimensional passenger vehicle suspension model using NSGA-II for ride comfort and ride safety

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.469-479
    • /
    • 2018
  • The present research study utilizes a multi-objective optimization method for Pareto optimization of an eight-degree of freedom full vehicle vibration model, adopting a non-dominated sorting genetic algorithm II (NSGA-II). In this research, a full set of ride comfort as well as ride safety parameters are considered as objective functions. These objective functions are divided in to two groups (ride comfort group and ride safety group) where the ones in one group are in conflict with those in the other. Also, in this research, a special optimizing technique and combinational method consisting of weighted sum method and Pareto optimization are applied to transform Pareto double-objective optimization to Pareto full-objective optimization which can simultaneously minimize all objectives. Using this technique, the full set of ride parameters of three dimensional vehicle model are minimizing simultaneously. In derived Pareto front, unique trade-off design points can selected which are non-dominated solutions of optimizing the weighted sum comfort parameters versus weighted sum safety parameters. The comparison of the obtained results with those reported in the literature, demonstrates the distinction and comprehensiveness of the results arrived in the present study.

Internet Shopping Optimization Problem With Delivery Constraints

  • Chung, Ji-Bok
    • 유통과학연구
    • /
    • 제15권2호
    • /
    • pp.15-20
    • /
    • 2017
  • Purpose - This paper aims to suggest a delivery constrained internet shopping optimization problem (DISOP) which must be solved for online recommendation system to provide a customized service considering cost and delivery conditions at the same time. Research design, data, and methodology - To solve a (DISOP), we propose a multi-objective formulation and a solution approach. By using a commercial optimization software (LINDO), a (DISOP) can be solved iteratively and a pareto optimal set can be calculated for real-sized problem. Results - We propose a new research problem which is different with internet shopping optimization problem since our problem considers not only the purchasing cost but also delivery conditions at the same time. Furthermore, we suggest a multi-objective mathematical formulation for our research problem and provide a solution approach to get a pareto optimal set by using numerical example. Conclusions - This paper proposes a multi-objective optimization problem to solve internet shopping optimization problem with delivery constraint and a solution approach to get a pareto optimal set. The results of research will contribute to develop a customized comparison and recommendation system to help more easy and smart online shopping service.

다목적함수 최적구조설계 기법 및 응용 (Multi-criteria Structural Optimization Methods and their Applications)

  • 김기성;김금
    • 대한조선학회논문집
    • /
    • 제46권4호
    • /
    • pp.409-416
    • /
    • 2009
  • The structural design problems are acknowledged to be commonly multi-criteria in nature. The various multi-criteria optimization methods are reviewed and the most efficient and easy-to-use Pareto optimal solution methods are applied to structural optimization of a truss and a beam. The result of the study shows that Pareto optimal solution methods can easily be applied to structural optimization with multiple objectives, and the designer can have a choice from those Pareto optimal solutions to meet an appropriate design environment.

Multi-objective topology and geometry optimization of statically determinate beams

  • Kozikowska, Agata
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.367-380
    • /
    • 2019
  • The paper concerns topology and geometry optimization of statically determinate beams with arbitrary number of supports. The optimization problem is treated as a bi-criteria one, with the objectives of minimizing the absolute maximum bending moment and the maximum deflection for a uniform gravity load. The problem is formulated and solved using the Pareto optimality concept and the lexicographic ordering of the objectives. The non-dominated sorting genetic algorithm NSGA-II and the local search method are used for the optimization in the Pareto sense, whereas the genetic algorithm and the exhaustive search method for the lexicographic optimization. Trade-offs between objectives are examined and sets of Pareto-optimal solutions are provided for different topologies. Lexicographically optimal beams are found assuming that the maximum moment is a more important criterion. Exact formulas for locations and values of the maximum deflection are given for all lexicographically optimal beams of any topology and any number of supports. Topologies with lexicographically optimal geometries are classified into equivalence classes, and specific features of these classes are discussed. A qualitative principle of the division of topologies equivalent in terms of the maximum moment into topologies better and worse in terms of the maximum deflection is found.

Goal-Pareto 기반의 NSGA 최적화 알고리즘 (Goal-Pareto based NSGA Optimization Algorithm)

  • 박준수;박순규;신요안;유명식;이원철
    • 대한전자공학회논문지SP
    • /
    • 제44권2호
    • /
    • pp.108-115
    • /
    • 2007
  • 본 논문에서는 최적화 알고리즘의 속도를 향상시킬 수 있는 방안으로 설계자가 원하는 목적함수들의 수렴 범위를 Goal로 설정하여 최적화를 수행하는 GBNSGA(Goal-Pareto based Non-dominated Sorting Genetic Algorithm)를 제안한다. 많은 공학문제들은 하나의 목표치를 충족하는 해를 찾는 것이 아니라 다수 목적함수들을 충족하는 해를 찾는 것이 일반적이다 특히, 이러한 목적함수들은 서로 상충적인 관계를 갖는 경우가 대부분이기 때문에 모든 목적함수들을 만족하는 유일해를 찾는 것은 거의 불가능하다. 그 대안으로 일부 목적을 희생하며 설계에 부합되는 최적해를 찾는 파레토(Pareto) 방식의 최적화 알고리즘들에 대한 많은 연구가 진행되었다. 본 논문에서는 이러한 파레토 기반의 최적화 알고리즘들의 성능 향상을 도모하기 위하여 설계자의 목적을 파레토 할당에 반영하는 GBNSGA를 제안하고, 그 성능을 NSGA와 weighted-sum 접근 방식과의 비교를 통해 그 우수성을 검증하였다.

다목적함수 최적화를 위한 새로운 진화적 방법 연구 (A Study of New Evolutionary Approach for Multiobjective Optimization)

  • 심문보;서명원
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.987-992
    • /
    • 2002
  • In an attempt to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Pareto-optimal points, instead of a single point. In this paper, pareto-based Continuous Evolutionary Algorithms for Multiobjective Optimization problems having continuous search space are introduced. This algorithm is based on Continuous Evolutionary Algorithms to solve single objective optimization problems with a continuous function and continuous search space efficiently. For multiobjective optimization, a progressive reproduction operator and a niche-formation method fur fitness sharing and a storing process for elitism are implemented in the algorithm. The operator and the niche formulation allow the solution set to be distributed widely over the Pareto-optimal tradeoff surface. Finally, the validity of this method has been demonstrated through a numerical example.

파레토 지배순위와 밀도의 가중치를 이용한 다목적 최적화 진화 알고리즘 (Evolutionary Multi - Objective Optimization Algorithms using Pareto Dominance Rank and Density Weighting)

  • 장수현
    • 정보처리학회논문지B
    • /
    • 제11B권2호
    • /
    • pp.213-220
    • /
    • 2004
  • 진화 알고리즘은 여러 개의 상충하는 목적을 갖는 다목적 최적화 문제를 해결하기에 적합한 방법이다. 특히, 파레토 지배관계에 기초하여 개체의 적합도를 평가하는 파레토 기반 진화알고리즘들은 그 성능에 있어서 우수한 평가를 받고 있다. 최근의 파레토 기반 진화알고리즘들은 전체 파레토 프론트에 균일하게 분포하는 해집합의 생성을 위해 개체들의 밀도를 개체의 적합도를 평가하기 위한 하나의 요소로 사용하고 있다. 그러나 밀도의 역할은 전체 진화과정에서 중요한 요소가 되기보다는 파레토 프론트에 어느 정도 수렴된 후, 개체의 균일 분포를 만들기 위해 사용된다. 본 논문에서 우리는 파레토 지배 순위와 밀도에 대한 임의가중치를 적용한 다목적 최적화 진화알고리즘을 제안한다. 제안한 알고리즘은 진화 개체의 적합도를 평가하기 위해 파레토 순위와 밀도에 대한 임의의 가중치를 적용하므로 전체 진화과정에서 파레토 순위와 밀도가 비슷한 영향을 미치도록 하였다. 또한, 제안한 방법을 6개의 다목적 최적화 문제에 적용한 결과 비교적 우수한 결과를 보였다.

지면효과를 고려한 WIG 선 익형의 공력특성 및 형상최적화 (Aerodynamic Characteristics and Shape Optimization of Airfoils in WIG Craft Considered Ground Effect)

  • 이주희;김병삼;박경우
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1084-1092
    • /
    • 2006
  • Shape optimization of airfoil in WIG craft has been performed by considering the ground effect. The WIG craft should satisfy various aerodynamic characteristics such as lift, lift to drag ratio, and static height stability. However, they show a strong trade-off phenomenon so that it is difficult to satisfy aerodynamic properties simultaneously. Optimization is carried out through the multi-objective genetic algorithm. A multi-objective optimization means that each objective is considered separately instead of weighting. Due to the trade-off, pareto sets and non-dominated solutions can be obtained instead of the unique solution. NACA0015 airfoil is considered as a baseline model, shapes of airfoil are parameterized and rebuilt with four-Bezier curves. There are eighteen design variables and three objective functions. The range of design variables and their resolutions are two primary keys for the successful optimization. By two preliminary optimizations, the variation can be reduced effectively. After thirty evolutions, the non-dominated pareto individuals of twenty seven are obtained. Pareto sets are all the set of possible and excellent solution across the design space. At any selections of the pareto set, these are no better solutions in all design space.

자원 재배치를 위한 차량 경로계획의 다목적 최적화 (Multi-objective Optimization of Vehicle Routing with Resource Repositioning)

  • 강재구;임동순
    • 산업경영시스템학회지
    • /
    • 제44권2호
    • /
    • pp.36-42
    • /
    • 2021
  • This paper deals with a vehicle routing problem with resource repositioning (VRPRR) which is a variation of well-known vehicle routing problem with pickup and delivery (VRPPD). VRPRR in which static repositioning of public bikes is a representative case, can be defined as a multi-objective optimization problem aiming at minimizing both transportation cost and the amount of unmet demand. To obtain Pareto sets for the problem, famous multi-objective optimization algorithms such as Strength Pareto Evolutionary Algorithm 2 (SPEA2) can be applied. In addition, a linear combination of two objective functions with weights can be exploited to generate Pareto sets. By varying weight values in the combined single objective function, a set of solutions is created. Experiments accomplished with a standard benchmark problem sets show that Variable Neighborhood Search (VNS) applied to solve a number of single objective function outperforms SPEA2. All generated solutions from SPEA2 are completely dominated by a set of VNS solutions. It seems that local optimization technique inherent in VNS makes it possible to generate near optimal solutions for the single objective function. Also, it shows that trade-off between the number of solutions in Pareto set and the computation time should be considered to obtain good solutions effectively in case of linearly combined single objective function.