• Title/Summary/Keyword: Partial Wave

Search Result 326, Processing Time 0.026 seconds

Numerical analysis of an offshore platform with large partial porous cylindrical members due to wave forces

  • Park, Min-Su;Kawano, Kenji;Nagata, Shuichi
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.337-353
    • /
    • 2011
  • In the present study, an offshore platform having large partial porous cylindrical members, which are composed of permeable and impermeable cylinders, is suggested. In order to calculate the wave force on large partial porous cylindrical members, the fluid domain is divided into three regions: a single exterior region, N inner regions and N beneath regions, and the scattering wave in each fluid region is expressed by an Eigen-function expansion method. Applying Darcy's law to the porous boundary condition, the effect of porosity is simplified. Wave excitation forces and wave run up on the structures are presented for various wave conditions. For the idealized three-dimensional platform having large partial porous cylindrical members, the dynamic response evaluations of the platform due to wave forces are carried out through the modal analysis. In order to examine the effects of soil-structure interaction, the substructure method is also applied. The displacement and bending stress at the selective nodal points of the structure are computed using various input parameters, such as the shear-wave velocity of soil, the wave height and the wave period. Applying the Monte Carlo Simulation (MCS) method, the reliability evaluations at critical structure members, which contained uncertainties caused by dynamic forces and structural properties, are examined by the reliability index with the results obtained from MCS.

The Effect of Partial Closure of the Duct Exit on the Impulsive Wave Impinging upon a Flat Plate (평판에 충돌하는 펄스파에 미치는 관출구 부분폐쇄의 영향)

  • Shin, Hyun-Dong;Lee, Young-Ki;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1595-1600
    • /
    • 2004
  • When a shock wave arrives at a duct, an impulsive wave is discharged from the duct exit and causes serious noise and vibration problems. In the current study, the characteristics of the impulsive wave discharged from a partial closed duct exit is numerically investigated using a CFD method. The Yee-Roe- Davis's total variation diminishing(TVD) scheme is used to solve the axisymmetric, unsteady, compressible Euler equations. With several partial closed duct exits, the Mach number of the incident shock wave $M_s$ and the distance L/D between the duct exit and a flat plate are varied in the range of $M_s$ = 1.01 ${\sim}$ 1.50 and L/D = 1.0 ${\sim}$ 4.0, respectively. The results obtained show that the magnitude of the impulsive wave impinging upon the flat plate strongly depends upon $M_s$, L/D and the partial closure of duct exit. The impulsive wave on the flat plate can be considerably alleviated by the partial closure of duct exit and, thus, the present method can be a passive control for the impulsive wave.

  • PDF

Reliability Analysis and Evaluation of Partial Safety Factors of Breakwater Armor stones Considering Correlation between Wave Height and Wave Steepness (파고와 파형경사의 상관성을 고려한 피복석의 신뢰성 해석 및 부분안전계수 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.3
    • /
    • pp.300-309
    • /
    • 2008
  • The partial safety factors of armor stones have been calculated on the assumption that all random variables are independent one another. However, wave height and wave steepness are not independent in the van der Meer's formula of armor stones but they are correlated. In the present study, we calculated the partial safety factors considering the correlation and compared them with those of other researchers who did not consider the correlation. The correlation between wave height and steepness is closely related to the variability of wave period. As the variability of wave period decreases, the correlation between wave height and steepness becomes strong, and hence the calculation results with and without consideration of the correlation show more difference. Therefore, the correlation should be taken into account in the calculation of partial safety factors in the area where the variability of wave period is small.

SOLVING FUZZY FRACTIONAL WAVE EQUATION BY THE VARIATIONAL ITERATION METHOD IN FLUID MECHANICS

  • KHAN, FIRDOUS;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.381-394
    • /
    • 2019
  • In this paper, we are extending fractional partial differential equations to fuzzy fractional partial differential equation under Riemann-Liouville and Caputo fractional derivatives, namely Variational iteration methods, and this method have applied to the fuzzy fractional wave equation with initial conditions as in fuzzy. It is explained by one and two-dimensional wave equations with suitable fuzzy initial conditions.

Numerical Analysis and Characteristics of Acoustic and Elastic Wave Scattering from Rigid or Soft Objects (강성 또는 연성 물체로 인한 음향파와 탄성파 산란의 수치해석 및 특성 분석)

  • Huinam Rhee
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1172-1180
    • /
    • 1998
  • Elastic wave scattering from an acoustically rigid or soft object is studied and compared with the acoustic wave scattering. The behavior of phases as well as magnitudes of partial waves and their total summation of scattered wave are numerically analyzed and discussed. The effect of mode conversion, which occurs between longitudinal and transversal waves in elastic wave scattering. on the magnitudes and phases of scattered waves is identified.

  • PDF

A Study on the Partial Discharge Measurement using Antenna in Metal-Enclosed Switchgear (폐쇄형 배전반내의 안테나를 이용한 부분방전측정에 관한 연구)

  • Kim, Young-No;Lee, Young-Suk;Seo, In-Chul;Hong, Jong-Suk;Kim, Jae-Chul;Kang, Chang-Won
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.534-536
    • /
    • 2000
  • This paper describes measurement and diagnosis methods for enclosed switchboards using antenna. In the laboratory partial discharges are generated on a needle-plate electrode configuration, the detected electromagnetic wave is analyzed by FFT. The detected electromagnetic wave in real enclosed switchboards is also analyzed by FFT, which is compared with frequency spectra of the laboratory to detect the partial discharge. The relationship between the partial discharge characteristics and the electromagnetic wave has been discussed.

  • PDF

Classification Technique of Kaolin Contaminants Degree for Polymer Insulator using Electromagnetic Wave (방사전자파를 이용한 고분자애자의 오손량 분류기법)

  • Park Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.162-168
    • /
    • 2006
  • Recently, diagnosis techniques have been investigated to detect a Partial Discharge associated with a dielectric material defect in a high voltage electrical apparatus, However, the properties of detection technique of Partial Discharge aren't completely understood because the physical process of Partial Discharge. Therefore, this paper analyzes the process on surface discharge of polymer insulator using wavelet transform. Wavelet transform provides a direct quantitative measure of spectral content in the time~frequency domain. As it is important to develop a non-contact method for detecting the kaolin contamination degree, this research analyzes the electromagnetic waves emitted from Partial Discharge using wavelet transform. This result experimentally shows the process of Partial Discharge as a two-dimensional distribution in the time-frequency domain. Feature extraction parameter namely, maximum and average of wavelet coefficients values, wavelet coefficients value at the point of $95\%$ in a histogram and number of maximum wavelet coefficient have used electromagnetic wave signals as input signals in the preprocessing process of neural networks in order to identify kaolin contamination rates. As result, root sum square error was produced by the test with a learning of neural networks obtained 0.00828.

Evaluation of Partial Safety Factors for Armor Units of Coastal Structures (피복재의 부분안전계수 산정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.336-344
    • /
    • 2007
  • A method is developed to evaluate partial safety factors for armor units, by which uncertainties of random variables in reliability function as well as wave height distribution with service periods could take into account straightforwardly. It is found that partial safety factors for resistance and wave height are correctly increased with improving target levels on failure of coastal structures at the same return and service periods. Therefore, it nay be possible to determine design variables through the same processes as those of deterministic method by using the partial safety factors for resistance and wave height evaluated in this paper, since uncertainties of random variables and the effects of service periods and target probability failure are directly considered in the processes of evaluation of partial safety factors.

ANALYTIC TRAVELLING WAVE SOLUTIONS OF NONLINEAR COUPLED EQUATIONS OF FRACTIONAL ORDER

  • AN, JEONG HYANG;LEE, YOUHO
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.411-421
    • /
    • 2015
  • This paper investigates the issue of analytic travelling wave solutions for some important coupled models of fractional order. Analytic travelling wave solutions of the considered model are found by means of the Q-function method. The results give us that the Q-function method is very simple, reliable and effective for searching analytic exact solutions of complex nonlinear partial differential equations.

A New Method for Extracting Resonance Information in Acoustic Wave Resonance Scattering (음향파 공명 산란의 새로운 해석방법)

  • 이희남;박영진
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.409-417
    • /
    • 1999
  • A new method is proposed for the isolation of resonances from scattered waves for the isolaton of resonances from scattered waves for acoustic wave resonance scattering problems. The resonance scattering function consisting purely of resonance information is defined. Acoustic wave scattering from a variety of submerged bodies is numerically analyzed. The classical resonance scattering theory (RST) and the new method compute identical magnitudes of the resonances from each partial wave, however, the phases are significantly different. The exact $\pi$-radians phase shifts through the resonance and anti-resonance frequencies show that the proposed method properly extracts the vibrational resonance information of the scatterer. Due to the differences in phases of the resonances from each partial wave, the new method and RST generate different total resonance spectra.

  • PDF