• 제목/요약/키워드: Particle charging

검색결과 90건 처리시간 0.03초

직접 광대전의 대전특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Direct Photoelectric Charging)

  • 이창선;김용진;김상수
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.753-759
    • /
    • 2000
  • Photoelectric charging is a very efficient way of charging small particles. This method can be applied to combustion measurement, electrostatic precipitator, metal separation and control of micro-contamination. To understand the photoelectric charging mechanism, particle charging of silver by exposure to ultraviolet is investigated in this study. Average charges and charge distributions are measured at various conditions, using two differential mobility analyzers, a condensation nucleus counter, and an aerosol electrometer. The silver particles are generated in a spark discharge aerosol generator. After that process, the generated particles are charged in the photoelectric charger using low-pressure mercury lamp that emits ultraviolet having wavelength 253.7 nm. The results show that ultra-fine particles are highly charged by the photoelectric charging. The average charges linearly increase with increasing particle size and the charge distribution change with particle size. These results are discussed by comparison with previous experiments and proposed equations. It is assumed that the coefficient of electron emission probability is affected by initial charge. The results also show that the charge distribution of a particle is dependent on initial charge. Single changed particle, uncharged particle and neutralized particle are compared. The differences of charge distribution in each case increase with increasing particle size.

2단 평행판 정전식 집진기에서의 입자하전 및 포집 (Particle Charging and Collection in Two-Stage, Parallel-Plate Electrostatic Precipitators)

  • 오명도;유경훈;이준식
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.432-445
    • /
    • 1994
  • From a theoretical analysis point of view, the 2-stage precipitator is decomposed into two units: charging cell and collecting cell. Collection efficiency predictions of the two-stage parallel-plate electrostatic precipitator have been performed theoretically incorporating with the charging and the collecting cells. Particle trajectorise passing the charging cell have been modeled as a simple one. Particle charge distribution at the outlet of the charging cell is calculated through integration of the present unipolar combined charging rate along the entire particle trajectory, and average charge of particles at the outlet of the charging cell is obtained from the particle charge distribution. As for the collecting cell, the diminution of particle concentration along the longitudinal direction of the collecting cell is investigated considering the conventional Deutsch's theory and the laminar theory. One should note that the collection efficiency formula derived is based on monodisperse aerosols. It has been confirmed through the analysis that predictions of particle charge by applying White's unipolar diffusion charging theory overpredict actual cases in the continuum regime, while predictions by Fuch's unipolar diffusion charging theory indicate the reasonable result in the same regime. Theoretical predictions of collection efficiency are also compared with the available experimental results. Comparisons show that the experimental results are consistently located in the collection efficiency region bounded by the two limits, the Deutsch and the laminar collection efficiencies. Finally design parameters of the 2-stage electrostatic precipitator have been investigated systematically through the one-variable-at-a-time method in terms of collection efficiency. Applied voltages on the corona wire of the charging cell and the plate of the collecting cell, and the average air velocity have been selected as the design parameters.

2단 평행판 전기집진기의 서브마이크론입자 집진성능 개선 연구 (Study on improvement of submicron particle collection performance in 2-stage parallel-plate electrostatic precipitators)

  • 유경훈;오명도;이준식
    • 설비공학논문집
    • /
    • 제9권3호
    • /
    • pp.323-332
    • /
    • 1997
  • It was reported by some researchers that two-stage parallel-plate ESPs, commonly called electronic air cleaners, show decreasing behavior of collection efficiency as particle size decreases below about $0.03{\mu}m$. This phenomenon is attributed to partial particle charging characteristics, where some of incoming particles are not charged in the charging cell of 2-stage parallel-plate ESP. One way to improve the decreasing collection efficieny in that particle size range is to enforce particle charging quantity in the charging cell. In the present study, in order to do this a 2-wire series-type charging cell modified from a 1-wire normal-type one was suggested and investigated theoretically and experimentally concerning improvement of the collection efficiency. It was confirmed from the experimental and theoretical works that the collection efficiency was apparently improved.

  • PDF

Charging Control Strategy of Electric Vehicles Based on Particle Swarm Optimization

  • Boo, Chang-Jin
    • 전기전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.455-459
    • /
    • 2018
  • In this paper, proposed a multi-channel charging control strategy for electric vehicle. This control strategy can adjust the charging power according to the calculated state-of-charge (SOC). Electric vehicle (EV) charging system using Particle Swarm Optimization (PSO) algorithm is proposed. A stochastic optimization algorithm technique such as PSO in the time-of-use (TOU) price used for the energy cost minimization. Simulation results show that the energy cost can be reduced using proposed method.

전기집진기에서의 에어로졸 나노입자의 하전 및 집진 특성 연구 (Charging and Collection Characteristics of Aerosol Nanoparticles in an Electrostatic Precipitator)

  • 한방우;황순철;홍원석;정상현;김용진
    • 연구논문집
    • /
    • 통권34호
    • /
    • pp.21-28
    • /
    • 2004
  • In this study, we report an investigation for the charging and collection of aerosol nanoparticles in an electrostatic precipitator (ESP) according to particle charging and diffusion effects. The competition between charging probability and diffusion effect determines the collection efficiency of nanoparticles in the ESP. In conclusion, collection efficiency continuously decreased with the reduction in the particle size. This indicates that poor partial charging effect of nanoparticles is more dominant than their diffusion effect in the ESP for the nanoparticles in the particle size range of 4-20 nm. Theoretical calculations using a unipolar diffusion charing theory were in good agreement with the experimental data for the nanoparticles less than 20 nm in diameter.

  • PDF

자화된 플라즈마 내에서의 단분산 입자의 하전량 특정 (Measurement of Monodisperse Particle Charging in Unmagnetized and Magnetized Plasmas)

  • 한장식;안강호;김곤호
    • 반도체디스플레이기술학회지
    • /
    • 제1권1호
    • /
    • pp.35-40
    • /
    • 2002
  • Understanding of charging properties of a small particle is necessary to control the particle contamination and to improve productivity of the electronic device in the plasma aided semiconductor manufacturing processes. In this study, the effects of both magnetic field and particle size on the charging properties are experimentally investigated in collisional dusty plasmas. The experiments carried out in the system consisted of a monodisperse particle generation system, a DC magnetized plasma generation system and a charge measurement system. The plasma chamber is made of cross-shape Pyrex surrounded by magnetic bucket (composed of 12 permanent magnetic bar) to confine the plasma. DC magnetic field up to 250G are applied to the plasma zone by external magnetic coil. Previous work shows the charging effect clearly increase with increasing the size of the particle and plasma density, as it was expected.

  • PDF

입자하전량에 따른 클린룸 수직벽체로의 입자침착 특성 (Characteristics of Particle Deposition onto Cleanroom Wall Panel for Varying Particle Charging Rates)

  • 김종준;노광철;성상철;백선호;오명도
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.725-730
    • /
    • 2008
  • In this study, we found out charged particle's deposition characteristic by experiments of $0.5{\mu}m$, $1.0{\mu}m$, $3.0{\mu}m$ size particle's concentration decay. We carried out the experiments on charged particle deposition onto the vertical cleanroom wall panel and some other fundamental experiments. The particle deposition mechanism is consist of sedimentation, convection, diffusion, thermophoresis, electrostatic and so on. Particle size determines mainly working deposition mechanism. The charged particle is made with corona discharge that are constituted field charging and diffusion charging. In addition, this combinational mechanism is called combined charging. The type of corona discharge determines quantity of particle electrical charge. In conclusion, we assumed that quantity of particle electrical charge accelerations deposition velocity onto the vertical cleanroom wall panel and proved it. And we figured out particle's deposition characteristic through compared between our experiment's results.

  • PDF

대전된 입자의 영상효과에 의한 필터효율 향상에 관한 실험적 연구 (An Experimental Study on Enhancement of the Filter Efficiency by the Image Effect of Charged Particle)

  • 이창선;정해영;김상수
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.760-768
    • /
    • 2000
  • Filter efficiency of electrically charged particle in uncharged fibrous filter was measured. In previous studies, the effect of charged particle on filter efficiency was investigated but there was difficulty in measuring of image effect that is appeared at the charged small particle. We could easily measure the image effect with charging small particles by photoelectric charging. The spark discharge aerosol generator and a differential mobility analyzer (DMA) were used to generate sub-micron monodisperse particles (${\leq}200$ nm). The generated particles were charged in photoelectric charging process using ultraviolet lamp and electric field. The filter efficiency of the charged particles, classified by another DMA, was measured in filter tester using a condensation nucleus counter (CNC) as function of particle diameter, particle charge and airflow velocity. It is shown that the filter efficiency increases with increasing charge number of the particle and is affected by particle size and flow velocity. Single fiber filter efficiency mainly depends on image force parameter and peclet number. The peclet number was not considered at previous other papers. We propose a modi fied experimental correlation as function of image force parameter and peclet number.

간접 광대전에 의한 서브 마이크론 입자의 단극하전 특성 (The Unipolar Charging Characteristics of Submicron Particles by Using an Indirect Photoelectric Charging)

  • 최영주;김상수
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.677-684
    • /
    • 2003
  • A new unipolar aerosol charger was developed by using an indirect photoelectric charging. The charger consists of two coaxial tubes, the inner UV lamp wrapped with stainless mesh and the outer Al cylinder. In this study, the effects of flow rate, particle size, and electric field were examined to search the optimal charging conditions with experimental and numerical methods. Monodisperse NaCl particles were fed into an annular space and the particles were charged by negative ions generated from Al plate exposed to the UV light. According to experimental results, the average number of elementary charge on particles increases from 2.5 to 5.5 as particle size increases from 50nm to 130nm at 2.5 L/min and 100V. The average number of elementary charge on particles was maximized at 25V as the electric potential between the stainless mesh and Al plate was varied from 0V to 400V.

입자 군집 최적화를 이용한 전지전력저장시스템의 충·방전 운전계획에 관한 연구 (Study on BESS Charging and Discharging Scheduling Using Particle Swarm Optimization)

  • 박향아;김슬기;김응상;유정원;김성신
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.547-554
    • /
    • 2016
  • Analyze the customer daily load patterns, be used to determine the optimal charging and discharging schedule which can minimize the electrical charges through the battery energy storage system(BESS) installed in consumers is an object of this paper. BESS, which analyzes the load characteristics of customer and reduce the peak load, is essential for optimal charging and discharging scheduling to save electricity charges. This thesis proposes optimal charging and discharging scheduling method, using particle swarm optimization (PSO) and penalty function method, of BESS for reducing energy charge. Since PSO is a global optimization algorithm, best charging and discharging scheduling can be found effectively. In addition, penalty function method was combined with PSO in order to handle many constraint conditions. After analysing the load patterns of target BESS, PSO based on penalty function method was applied to get optimal charging and discharging schedule.