• Title/Summary/Keyword: Particle-alloys

Search Result 145, Processing Time 0.033 seconds

The calculation of stress-strain behavior of Ti-10V-2Fe-3Al alloys (Ti-10V-2Fe-3Al 합금의 응력-변형거동 계산)

  • 오택열
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.38-47
    • /
    • 1989
  • The Finite Element Method has been employed to calculate the effect of particle size, matrix, and volume fractions on the stress-strain relations of .alpha.-.betha. titanium alloys. It was found that for a given volume fraction, the calculated stress-strain curve was higher for a finer particle size than for a coarse particle size within the range of the strains considered, and this behavior was seen for all the different volume fraction alloys considered. The calculated stress-strain curves for three vol. pct .alpha. alloys were compared with their corresponding experimental curve, and in general, good agreement was found.

  • PDF

The Effect of Electromagnetic Stirring on the Semi-Solid Microstructure of Cu-0.15wt%Zr Alloy (전자교반에 의한 Cu-0.5wt%Zr 합금의 반응고 조직제어에 관한 연구)

  • Lim, Sung-Chul;Lee, Heung-Bok;Kim, Kyung-Hoon;Kwon, Hyuk-Chon;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.26 no.1
    • /
    • pp.40-45
    • /
    • 2006
  • Most of the work reported concerned the semi-solid processing of low melting point alloys, and in particular light alloys of aluminum and magnesium. The purpose of this paper is to develop a semi-solid microstructure of Cu alloys using electromagnetic stirring applicable for squirrel cage rotor of induction motor. The size of primary solid particle and the degree of sphericity as a function of the variation in cooling rate, stirring speed, and holding time were observed. By applying electromagnetic stirring, primary solid particles became finer and rounder relative to as-cast sample. As the input frequency increased from 30 to 40 Hz, particle size decreased. The size of primary solid particle was found to be decreased with increasing cooling rate. Also, it decreased with stirring up to 3 minutes but increased above that point. The degree of sphericity became closer to be 1 with hold time. Semi-solid microstructure of Cu alloys, one of the high melting point alloys, could be controlled by electromagnetic stirring.

A study on the Formation of Adiabatic Shear Band of Tungsten Heavy Alloys (텅스텐 중합금의 단열전단밴드 형성 연구)

  • 이승우;문갑태;홍성인
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.187-190
    • /
    • 2002
  • To study adiabatic shear band formation of tungsten heavy alloys, 5 prismatic specimens are loaded by high velocity impacts and treated as plane strain problems. Their volume percent of tungsten particles in WHA are 81%, 93% and 97% respectively and for the fixed 81% volume percent, small size particle model, large size particle model, undulated particle models are considered and then, the effects of particle's volume ratio, geometry and size to the formation of shear band are discussed.

  • PDF

Microstructural Characterization of Gas Atomized Copper-Iron Alloys with Composition and Powder Size

  • Abbas, Sardar Farhat;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.19-24
    • /
    • 2018
  • Cu-Fe alloys (CFAs) are much anticipated for use in electrical contacts, magnetic recorders, and sensors. The low cost of Fe has inspired the investigation of these alloys as possible replacements for high-cost Cu-Nb and Cu-Ag alloys. Here, alloys of Cu and Fe having compositions of $Cu_{100-x}Fe_x$ (x = 10, 30, and 50 wt.%) are prepared by gas atomization and characterized microstructurally and structurally based on composition and powder size with scanning electron microscopy (SEM) and X-ray diffraction (XRD). Grain sizes and Fe-rich particle sizes are measured and relationships among composition, powder size, and grain size are established. Same-sized powders of different compositions yield different microstructures, as do differently sized powders of equal composition. No atomic-level alloying is observed in the CFAs under the experimental conditions.

Powder Fabrication of Nb-Ti Alloys Using Hydrogenation Process

  • Semboshi, Satoshi;Masahashi, Naoya;Konno, Toyohiko J.;Hanada, Shuji
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.165-166
    • /
    • 2006
  • Nb-Ti alloys were hydrogenated to prepare fine and contamination-free powders. Cracks were introduced in the alloys when they were annealed at 1473 K and cooled in a hydrogen atmosphere. The fragments produced by hydrogen-induced cracking are brittle and the friability enhanced with the Ti content of the alloy, which is beneficial for further refinement of particle size. We also demonstrate that Nb-Ti powders with the average particle size less than 1 m can be produced by ball milling at a temperature lower than 203 K. Furthermore, hydrogen-free powders can then be obtained by annealing above the temperature corresponding to hydrogen desorption from Nb solid solution.

  • PDF

Automatic Detection and Characterization of Cracked Constituent Particles/Inclusions in Al-Alloys under Uniaxial Tensile Loading (인장하중에 의한 Al 합금내 크랙형성 복합상의 자동검출 및 정량분석)

  • Lee, Soon Gi;Jang, Sung Ho;Kim, Yong Chan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • The detailed quantitative microstructural data on the cracking of coarse constituent particles in 7075 (T651) series wrought Al-alloys have been studied using the utility of a novel digital image processing technique, where the particle cracks are generated due to monotonic loading. The microstructural parameters such as number density, volume fraction, size distribution, first nearest neighbor distribution, and two-point correlation function have been quantitatively characterized using the developed technique and such data are very useful to verify and study the theoretical models for the damage evolution and fracture of Al-alloys. The data suggests useful relationships for damage modeling such as a linear relationship between particle cracking and strain exists for the uniaxial tensile loading condition, where the larger particles crack preferentially.

Electrocatalytic activity of Carbon-supported near-surface alloys (NSAs) for Electode reaction of Fuel cell (연료전지 전극 반응을 위한 카본 담지 표면 합금의 전기촉매 활성)

  • Park, In-Su;Lee, Kug-Seung;Choi, Baeck-Beom;Sung, Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.316-319
    • /
    • 2006
  • There is a worldwide interest in the development and commercialization of Polymer Electrolyte Membrane Fuel Cells (PEMFCs) for vehicular and stationary applications. One of the major objectives is the reduction of loaded electrode materials, which is comprise of the Pt-based noble metals. In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the deposition of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled active materials were formed on the surface of carbon-supported Au nanoparticles. The structural and electrochemical analyses indicate that the active materials were deposited on the surface of Au nanoparticles selectively and that an at toying process occurred during the successive reducing process The carbon-supported & surface-alloys showed the higher electrocatalytic activity than those of the particle-alloys and commercial one (Johnson-Matthey) for the reaction of methanol and formic acid oxidation. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

Electrocatalytic activity of carbon-supported near-surface alloys (NSAs) for electrode reaction of fuel cell (연료전지 전극 반응을 위한 카본 담지 표면 합금의 전기촉매 활성)

  • Park, In-Su;Sung, Yung-Eun
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.64-69
    • /
    • 2006
  • There is a worldwide interest in the development and commercialization of polymer electrolyte membrane fuel cells [PEMFCs] for vehicular and stationary applications. One of the major objectives is the reduction of loaded electrode materials, which is comprise of the Pt-based noble metals. In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the supporting of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled active materials were formed on the surface of carbon-supported Au nanoparticles. The structural and electrochemical analyses indicate that the active materials were deposited on the surface of Au nanoparticles selectively and that an alloying process occurred during the successive reducing process. The carbon-supported & surface-alloys showed the higher electrocatalytic activity than those of the particle-alloys and commercial one [Johnson-Matthey] for the reaction of methanol and formic acid oxidation. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

Effect of Variation in Particle Size of WC and Co Powder on the Properties of WC-Co Alloys (WC와 Co원료 입자크기 변화에 따른 WC-Co계 초경합금의 특성 변화)

  • Chung, Tai-Joo;Ahn, Sun-Yong;Paek, Yeong-Kyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.171-177
    • /
    • 2005
  • The effect of variation in particle size of WC and Co powder on the properties of WC-Co alloys was investigated. WC and Co powders having different particle sizes were used in the fabrication of $WC-10\;wt\%$Co composites. High hardness and low fracture toughness alloy was obtained with the decrease in WC particle size regardless of Co particle size. It was newly found in this investigation that the initial particle size of Co as well as WC had a great role in the microstructure and properties of WC-Co hard materials. The average grain size and fracture toughness of WC-Co alloys using same WC powder size increased and their hardness decreased with the use of relatively finer Co binder.

Electrocatalytic activity of Carbon-supported near-surface alloys (NSAs) for Formic acid oxidation (개미산 산화 반응을 위한 카본 담지 표면 합금의 전기촉매 활성)

  • Park, In-Su;Choi, Jong-Ho;Lee, Kug-Seung;Jeon, Tae-Yeol;Sung, Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.459-462
    • /
    • 2006
  • Formic acid recently attracted attention as an alternative fuel for direct liquid fuel cells(DLFCs) due to its high theoretical open circuit voltage(1.45V). In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the deposition of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled Pt layer were formed on the surface of carbon-supported Au nanoparticles. The Au-Pt[x] showed the higher electrocatalytic activity than those of the particle-alloys and commercial one (Johnson-Matthey) for the reaction of formic acid oxidation when the mass-specific currents were compared. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF