• 제목/요약/키워드: Particulate nitrate

검색결과 94건 처리시간 0.023초

미세입자(PM2.5) 측정시 발생되는 질산염(NO3-) 휘발에 관한 연구 (A Study on the Volatilization of Particulate Nitrate (NO3-) During Fine Particle (PM2.5) Measurement)

  • 강병욱;이학성
    • 한국대기환경학회지
    • /
    • 제18권4호
    • /
    • pp.297-303
    • /
    • 2002
  • Fine particles (d$_{p}$ < 2.5 $\mu$m) were measured using an annular denuder system (ADS) in Chongju. The data set was collected on fifty-eight different days with a 24-hr sampling period from October 27, 1995 through August 25, 1996. Particulate nitrate in the ADS was also measured on teflon and nylon filters in series behind denuders to collect HNO$_3$, HNO$_2$, SO$_2$and NH$_3$. From this study. the mean concentration of particulate nitrate of PM$_{2.5}$ in the ADS were seen with the following order: winter (5.05) >fall (4.36) >spring (3.92) > summer (1.10 $\mu\textrm{g}$/㎥). Nitrate losses, which calculated from the ratio of nylon filter nitrate to the sum of teflon and nylon filter nitrates, varied in the following manner summer (72.2%) > spring (42.6%) > fall (23.5%)> winter (0.4%). Especially, gaseous nitric acid was dominant at temperature higher than 8$^{\circ}C$ while particulate nitrate was major species in total nitrate below that temperature. This indicates the particulate nitrate loss is strongly correlated rather with ambient temperature.e.e.

환경 대기중 Nitrate의 생성에 관한 연구 (A Study on the Formation of Nitrate in the Atmosphere)

  • 천만영;강공언;김희강
    • 한국대기환경학회지
    • /
    • 제8권1호
    • /
    • pp.68-73
    • /
    • 1992
  • A study on the formation of particulate nitrate$(NO_3^-)$ and gaseous nitrate$(HNO_3)$ in the atmosphere was carried out in Seoul from Oct 8 to 11 1991. To collect $NO_3^-$ and $HNO_3$ in the ambient air, dual filter pack sampler (47mm$\phi$) was used. In the dual filter pack sampler, the first filter was Teflon filter (poresize 1$\mum$) for collection of $NO_3^-$ and the second filter was Nylon filter (poresize 0.45 $\mum$) for $HNO_3$. Particulate nitrate$(NO_3^-)$ and Sulfate ions were analysed by Ion chromatography. $HNO_3$ concentration was higher in the day time $(9.93\mug/m^3)$ than the night time$(3.50\mug/m^3)$, and Particulate nitrate$(NO_3^-)$ concentration was higher in the night time and early morning$(6.21\mug/m^3)$ than the day time$(4.31\mug/m^3)$. The conversion rate of $NO_x$ to total nitrate$(NO_3^-, HNO_3)$ was 7.57%/hr in the day time and 4.79%/hr in the night time, and total average conversion rate was 5.60%/hr.

  • PDF

광화학 상자모델과 기체/입자 평형모델을 이용한 서울ㆍ수도권의 계절별 질산염 농도 변화 (Seasonal Variation of Nitrate in the Greater Seoul Area Using a Photochemical Box Model and a Gas/Aerosol Equilibrium Model)

  • 이시혜;김영성;김용표;김진영
    • 한국대기환경학회지
    • /
    • 제20권6호
    • /
    • pp.729-738
    • /
    • 2004
  • Seasonal variation of major inorganic ions in the greater Seoul area was estimated using a photochemical box model and a gas/aerosol equilibrium model with emphasis on semi -volatile nitrate. Pollutant emission was determined by season by comparing the predicted concentration with the measurement one obtained for a year from the late 1996. The results showed that particulate nitrate was the highest in summer but about 40% of total nitrate was present in the gas phase. This was due to volatilization at high temperature since ammonia was sufficient to neutralize all nitrate regardless of season. As relative humidity in summer was higher than the deliquescence point, particulate ion concentration with water was two times higher than that in other season. So called ‘NOx disbenefit’ indicating increase in particulate ion concentration with decrease in NOx emission was evident especially in winter.

생성메카니즘에 따른 부유분진 등 입자상 nitrate 농도 (Concentration of Particulate Nitrate Classified by Formation Mechanism in Seoul Ambient Air)

  • 천만영;김희강
    • 한국대기환경학회지
    • /
    • 제11권1호
    • /
    • pp.37-44
    • /
    • 1995
  • Concentration of particulate nitrate classified by formation mechanism and particle diameter in ambient air was determined from Feb. to Oct. 1993. Sampling was carried out using a two-stage Andersen air sampler at the top of a five-story building located at Kon-Kuk University in seoul. Concentration of N $H_{4}$N $O_{3}$ in TSP was measured by pyrolysis of sample filters at 160.deg.C for 1hr. concentration of N $H_{4}$N $O_{3}$ was higher in winter time compared with that in summmer time. Also, concentration of N $H_{4}$N $O_{3}$ was higher in fine particles compared with that in coarse particle. The range of N $H_{4}$N $O_{3}$ concentration was between 2.9 and 9.9.mu.g/ $m^{3}$. Weight fraction of N $H_{4}$N $O_{3}$ in total particulate nitrate was 31.1 .sim. 59.5%, and weight fraction of N $H_{4}$N $O_{3}$ in TSP was 2.1 .sim. 11.2%. Concentration of NaN $O_{3}$, which originated from sea salt, was highest in spring time and lowest in summer time,and the concentration range was between 0.1 and 0.7.mu.g/ $m^{3}$. NaN $O_{3}$/TSP ratio was very low (0.1 .sim. 0.4%) indicating that the portion of NaN $O_{3}$in TSP was negligible. Concentration of particulate nitrate originated from soil was 2.4 .sim. 2.9.mu.g/ $m^{3}$. Weight fraction of that in total particulate nitrate was 14.0 .sim. 37.1%.

  • PDF

도시 대기중에서 $NH_4NO_{3(s, aq)}-HNO_{3(g)}-NH_{3(g)}$의 평형에 관한 연구(II) (A Study on Equilibrium of $NH_4NO_{3(s, aq)}-HNO_{3(g)}-NH_{3(g)}$ in Urban Atmosphere)

  • 천만영;이영재;김희강
    • 한국대기환경학회지
    • /
    • 제9권2호
    • /
    • pp.154-159
    • /
    • 1993
  • Theoretical prediction of the equilibrium of temperature and relative humidity dependance involving $HNO_{3(g)}-NH_{3(g)}$ and $NH_4NH_{3(s, aq)}$ was compared with atmospheric measurement of particulate nitrate$(NO_3^-)$, Ammonia-Nitric Acid partial pressure product $([$NH_{3(g)}][HNO_{3(g)}]ppb^2$) by a triple filter pack sampler from Oct 1991 to July 1992. The measured $HNO_3NH_3$ concentration product K was greater than equilibrium constant $K_p$ calculated from thermodynamic data of $NH_4NO_{3(s, aq)}-HNO_{3(g)}-NH_{3(g)}$ during fall, winter and spring. But K was lower than $K_p$ in summer. K was greater than $K_p$ as the result of supersaturation by air pollution, particularly anthropogenic $NH_3$.The reason of $K < K_p$ was due to removal of particulate nitrate$(NO_3^-)$ by rainout and washout. $NH_4NO_3$ which consists mainly of particulate nitrate is formed by reaction between $HNO_3$ and $NH_3$. As a result of the removal of particulate nitrate$(NO_3^-)$ by rainout and washout, concentrations of $HNO_3$ and $NH_3$ are decreased by equilibrium transfer(Le Chatelier's Law) in atmosphere.

  • PDF

都市大氣중 浮遊粒子狀物質, 鹽化物, 窒酸鹽 및 黃酸鹽의 濃度와 粒經分布 (Concentration and Size Distribution of Atmospheric Particulate Matters, Chloride, Nitrate, and Sulfate Salts in Urban Air)

  • 손동헌;허문영
    • 한국대기환경학회지
    • /
    • 제2권3호
    • /
    • pp.27-33
    • /
    • 1986
  • Atmospheric particulate matter (A. P. M.) was collected and size-fractionated by an Andersen high-volume air sampler over 15 month period from Jan. 1985 to Feb. 1986 in Seoul. The concentration of chloride, nitrate and sulfate were extracted in an ultrasonic bath and were analyzed by ion chromatography. The annual arithmetical mean of A. P. M. was 128.54 $\mug/m^3$. The concentration of anions were 2.88 $\mug/m^3$ for chloride, 3.86$\mug/m^3$ for nitrate, and 25.44$\mug/m^3$ for sulfate. The content of A. P. M. was lowest in the particle size range 1.1 $\sim 3.3\mum$ and increased as the particle size increased or decreased. And the anions exhibited a seasonal variation in the isize distribution. The contents of anions were higher in winter than summer. Ther ratio of fine particles to the total particles defined by F/T for chloride, nitrate and sulfate. The F\ulcornerT of these anion generally decrease with increasing air temperature. This tendency was prevalent in the chloride and nitrate.

  • PDF

都市大氣中 黃酸鹽과 窒酸鹽 關한 硏究 (A Study of Size Distribution of Sulfate and Nitrate in Urban Air)

  • 신상은;김승학;김희강
    • 한국대기환경학회지
    • /
    • 제2권1호
    • /
    • pp.33-39
    • /
    • 1986
  • Particulate matter was collected by Andersen Air Sampler in the Seoul area during February-October, 1985, in order to investigate size distribution of sulfate and nitrate in aerosol, and conversion of sulfur dioxide to sulfate and that of nitrogen dioxide to nitrate. The size distribution of sulfate and nitrate had fine mode. The ratio of fine sulfate to total sulfate in aerosol and that of fine nitrate to total nitrate showed between 54.6% and 86%, and 55.7% and 95%, respectively, which presumably originated from gaseous reaction of sulfur dioxide and nitrogen dioxide in the atmosphere.

  • PDF

DPF 재생이 경유자동차 배출특성에 미치는 영향 (Effect of DPF Regeneration on Emission Characteristics in Diesel Engines)

  • 문태영;손지환;윤현진;홍희경;최광호;김정수;김정화
    • 한국분무공학회지
    • /
    • 제19권3호
    • /
    • pp.142-148
    • /
    • 2014
  • In this study, characteristics of gaseous pollutants and particulate matter were investigated on the condition of DPF regeneration and normal DPF condition. THC, CO, $CO_2$, NOx, and $CH_4$ were analyzed by MEXA-7200H and CVS-7100 respectively. Particulate Matter (PM) was measured by difference in weight of Membrane filter. Particle Number (PN) was measured by CPC analyzer. And Sulfate, Nitrate, Organic were measured by Aerosol Mass Spectrometer (AMS). As a result, gaseous pollutants and particulate matter were detected in higher concentration during DPF regeneration than normal DPF condition. And the PN increased by 94%, the fuel consumption was reduced by 29% on DPF generation process. Sulfate, Nitrate and Organic were undetectable level during normal DPF condition. But the highest concentration of Sulfate, Nitrate and Organic were measured as $100{\mu}g/m^3$, $20{\mu}g/m^3$ and $15{\mu}g/m^3$ respectively on DPF regeneration condition. VOCs concentrations (Benzene, Toluene, Ethylbenzene, Xylene) were analyzed by using PTR-MS. Benzene and Toluene emission have little or no change depending on DPF regeneration. But the Ethylbenzene and Xylene have comparatively low emissions on DPF regeneration.

서울시 부유분진중 해염입자에 의한 입자상 nitrate농도 (Concentration of Particulate Nitrate Originated from Sea Salt in Seoul Ambient Air)

  • 천만영;이영재;김희강
    • 한국대기환경학회지
    • /
    • 제10권3호
    • /
    • pp.191-196
    • /
    • 1994
  • Concentration of particulate nitrate originated from sea salt in ambient air was determined from February to October 1993. Sampling was carried out using a two-stage Anderson air sampler at the top of a five-story building located at Kon-Kuk University in Seoul. Concentration of NaNO$_3$, which originated from sea salt was highest in spring time and lowest in summer the and the concentration range was between 0.10 and 0.66 $\mu\textrm{g}$/㎥. NaNO$_3$/TSP ratio was very low 0.05~0.39%) indicating that the portion of NaNO$_3$ in TSP was negligible.

  • PDF