• Title/Summary/Keyword: Passive Ventilation

Search Result 81, Processing Time 0.027 seconds

A Study on Ventilation and Heat Transfer Coefficient of Passive Ventilation Skin (패시브환기외피의 통기성능 및 열관류율에 대한 연구)

  • Lee, Tae-Cheol;Son, Yu-Nam;Yoon, Seong-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.9
    • /
    • pp.679-684
    • /
    • 2012
  • This paper aims to evaluate performances of ventilation and insulation of 6types PVS(Passive ventilation skin) by numerical simulation. The results are as follows. 1) The result of Performance of ventilation by pressure difference, it was shown that the amount of ventilation changed bigger under 1Pa and amount of ventilation increased according to increase opening area (${\alpha}A$). Although same opening area of PVS, it can predict that pressure differences cause ventilation differences. 2) In case of same opening area of PVS, however, it was changed the amount of ventilation each types of PVS that is distinguished opening area by flow coefficient. 3) Dynamic U-value that represents performance of insulation PVS was similar change upper ${\alpha}A40\;cm^2/m^2$, great change in casse of 0.1 Pa pressure difference. In case of ${\alpha}A10\;cm^2/m^2$, it was changed bigger under 0.3 Pa pressure difference, ${\alpha}A20\;cm^2/m^2$ of PVS was changed under 0.2 Pa pressure difference.

An Experimental Study on Ventilation and Thermal Performance of Passive Ventilation Building Envelopes (패시브환기외피의 통기 및 열성능에 관한 실험적 연구)

  • Yoon, Seong-Hwan;Lee, Tae-Cheol;Kang, Jung-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.711-717
    • /
    • 2011
  • In this study, 5 types of PVS(Passive ventilation system) units are made and experimented its ventilation performance, thermal performance according to open rate and hole diameter of perforated aluminum plane. Results are as follows. 1) The ventilation performance increases approximately 50~70% according by the open rate of PVS increasing. Also, the ventilation performance increases about 2%~12% according by the hole diameter of PVS increasing. 2) In winter temperature/pressure condition(in : $20^{\circ}C$, out : $-2^{\circ}C/{\Delta}P$ : 0.2~5.0Pa) the temperature of inflow air decreases according by the open rate of PVS increasing. Heat gain performance decreases 10.1%, 25.6% when open rate increases 3) In the same condition, Heat gain performance decreases 18.3%, 18.8% according by the hole diameter of PVS increasing.

A Numerical Study on Sectional Temperature Distribution and Heat Recovery Amount of Passive Ventilation Skin (패시브환기외피의 단면온도분포 및 열회수량에 관한 수치해석적 연구)

  • Lee, Tae-Cheol;Son, Yu-Nam;Yoon, Seong-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.10
    • /
    • pp.705-710
    • /
    • 2012
  • This study aims to analyse changes of inner temperature of PVS(Passive ventilation skin) and heat recovery when it has ventilation of air through PVS using numerical simulation in the winter condition. Results are as follows. 1) In case of the air inflows through PVS, change of inner temperature of PVS is lower than in case of the air flows inner space to out space, by dynamic insulation. 2) It was identified that the temperature gradient of PVS were bigger by increases of ventilation amount. To reduce ventilation load, heat transfer efficiency at the inner side of PVS is important and what performance of insulation at the inner side of PVS secure helps to improve heat performance of all PVS.

Natural Ventilation Planning by Analysis on Air Velocity Property of a Traditional Korean House (한국 전통주거의 기류 분석을 통한 자연통풍 설계 연구)

  • 최윤정;김인선;허범팔
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2001.05a
    • /
    • pp.117-120
    • /
    • 2001
  • This study is a preliminary research to develop design principles for environmentally friendly housing. The purposes of study are to investigate the literatures related passive design for summer and theory of ventilation, to analyze the indoor airflow patterns in traditional Korean house during summer, and to propose the design factors for effective passive cooling system. The analysis for airflow patterns was focused on the ‘An bang’and the ‘Dae Chung’in the ‘An Chae’of a traditional house located in Seoul. Field measurements of air temperature and air velocity were carried out at 30 different measuring points with 8 different window-opening conditions. The measurements were taken on the hottest summer days in August 2000. It is concluded that from an environmentally friendly standpoint design factors to control indoor thermal environment by a passive cooling system during the summer are as follows; ceiling structure has thermal performance like a time-lag effect, optimum height and length of eaves which can prevent sunlight and divert airflow toward the sitting level, building arrangement acceptable the prevailing wind, strategic window arrangement which makes cross ventilation possible (especially north-south) at the sitting level, window opening condition which is possible to intersect two cross-ventilation stream at the main living areas, northward windows remaining in shade to create the air pressure difference, and planning building shape like a bracket that has optimum width and depth.

  • PDF

Performance Analysis of Passive Solar Chamber System (자연형 태양 챔버 시스템의 성능 분석)

  • Jang, Hyang-In;Kim, Byung-Gu;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.57-65
    • /
    • 2011
  • This study proposes a Passive Solar Chamber System (PSCS) as a passive method for reduction of building energy consumption. Through numerical analysis, the study quantitatively analyzes system performance and aims to provide foundational data for system design. For this purpose, the study configures different system operation modes seasonally and also computes thermal and ventilation performance of the system in accordance with design factors(solar radiation, air channel height and distance). System and ventilation efficiency increases along with increase in solar radiation and air channel distance; however, as the air channel height increases, the efficiencies showed a tendency to decrease. Upon installation of PSCS, an average of $98.23W/m^2$ of heat flux was introduced in the daytime for the month of January in comparison to walls with no PSCS installed. For the month of August, natural ventilation of $56.68m^3/h$ was shown to be supplied to the room.

Numerical Simulation on Thermal Performence of Passive Ventilation Skin (패시브환기외피의 열성능 수치시뮬레이션)

  • Lee, Tae-Cheol;Son, Yu-Nam;Yoon, Seong-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.144-149
    • /
    • 2011
  • This study aims to evaluate performance of ventilation and thermal about breathing wall by flowing air to indoor on appropriate conditions that is effective aperture area in the Central region(20, 50, $80cm^2/m^2$). The result is as follows : 1) Sectional temperature distribution of inflow and outflow out under the constant ventilation was reviewed. In the case of inflow, outside temperature increase effect was confirmed. 2) The more differences of temperature between outdoor and indraft of air was high, the more heat recovery was high.

  • PDF

An Evaluation of Indoor Thermal Environment for Zero-Carbon Green Home according to the Operation Conditions in Summer (제로카본 그린홈의 여름철 운영조건에 따른 실내 열환경 평가)

  • Yu, Jung yeon;Cho, Dong woo;Kim, Kee Han
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.2
    • /
    • pp.25-36
    • /
    • 2020
  • The Korean government has a plan to mandate zero-energy buildings in 2020 for public and 2025 for private buildings. In order to design a zero-energy building, insulation and airtightness, which are the most basic elements of passive house technology, are required, and the government has been accomplished this through step-by-step strengthening of related standards. In passive house with high thermal insulation and airtightness performance, the heat introduced into the building through solar radiation can be stored for a long time to keep the inside warm during winter. On the other hand, during summer, heat introduced into the building cannot be easily released to outside, so it is necessary to actively block solar radiation and high temperature outdoor air to prevent an increase of indoor temperature. Therefore, this study aims to derive an appropriate operation condition of passive house to maintain the indoor temperature at an suitable level according to the ventilation methods and solar shading conditions. As a result, under the conditions that the outdoor temperature was 28℃ or less, the ventilation using a heat recovery ventilation system at daytime and natural ventilation at nighttime were selected for the most appropriate operation method. In addition, in the case of solar shading, it was found that blocking solar radiation at daytime using the blind and open the blind at nighttime to ensure natural ventilation were selected for the most appropriate solar shading condition.

An application of LT method for Design-decisions to improve energy performance of non-domestic buildings during the early stage of Remodeling Process (비주거용 건물의 리모델링 계획 시 에너지 성능 향상을 위한 LT method의 적용 방법에 관한 연구)

  • Leigh, Seung-Bok;Byun, So-Hyung
    • KIEAE Journal
    • /
    • v.3 no.4
    • /
    • pp.3-14
    • /
    • 2003
  • Remodeling for an aged building is emerging as a potential alternative towards the future of the building industry. It is a more effective method than the new construction in environmental friendly view. Most of remodeling were aimed at the improvement of the function of the deteriorated finishing materials. But, at the early stage of remodeling process, energy performance of a building can be improved by adopting passive design solutions such as daylighting and natural ventilation. The purpose of this study is to explain the passive design strategy in remodeling process and to suggest a application of LT method. LT method is an energy-design tool which responds to parameters available early in design development. It provides an output of annual primary energy for lighting, heating, cooling and ventilation in non-domestic buildings. LT method basically uses the concept of passive zone and non-passive zones and should be used to evaluate the energy performance of a number of options and to make comparisons. In this paper, the process of LT method is introduced and investigated an applicability in our office building.

A Study on the Application Method of Passive Cooling Technology in Contemporary Architecture (현대 건축공간에서 버네큘러 주거 냉방기법의 적용방법에 관한 연구)

  • Yoon, Jae-Young;Hur, Yong-Seok;Hur, Bum-Pall
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.3
    • /
    • pp.22-29
    • /
    • 2010
  • Recent days, transition to ecological thought is being accelerating by environmental impact with a sustainable development. This symptom is no exception in architecture area. So is vernacular design affecting on modern architecture in many ways in terms of economical aspect and eco-friendly environment as well. Natural energy like solar power, environment, and terrestrial heat that applied in vernacular architecture is also widely accepted in name of 'sustainable energy' of which a design applied with ventilation and airing of natural wind is very useful & pragmatic in terms of economical reason. Accordingly, this study examined a relation between vernacular architecture and natural wind and compared it with traditional type and its feature of ventilation & airing. Ventilation & airing applied in the past can be divided into three categories: methods by convection, natural element, and architectural type. All these methods gave some pleasant felling indoors when there were no artificial energies. Even in modern age, such a ventilation & airing is being used with traditional type in different variety of materials, and it will be developed with modern technology without any extra cost in terms of sustainable expansion, and opened for further researches.

Technical Measures for Improving Energy Efficiency in Historic Buildings -Focused on Researches and Case Studies of the West- (역사적 건축물의 에너지 효율 향상을 위한 계획기법 -서양의 연구동향 및 사례를 중심으로-)

  • Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 2018
  • This study is to research technical measures for improving energy efficiency in the conservation and reuse of historic buildings focused on the recent research trends and case studies of the west. These measures are broadly classified into three types, the passive measures for saving energy and increasing comfort, the most cost-effective energy saving strategies, and the renewable energy sources. Firstly, the passive measures are divided into the elements and systems. The passive elements are awnings and overhanging eaves, porches, shutters, storm windows and doors, and shade trees. There are also the natural ventilation systems such as the historic transoms, roofs and attics to improve airflow and cross ventilation to either distribute, or exhaust heat. Secondly, the most cost-effective energy efficiency strategies are the interior insulation, airtightness and moisture protection, and the thermal quality improvement of windows. The energy efficiency solutions of modern buildings are the capillary-active interior insulation, the airtightness and moisture protection of interior walls and openings, and the integration of the original historic window into the triple glazing. Beyond the three actions, the additional strategies are the heat recovery ventilation, and the illumination system. Thirdly, there are photovoltaic(PV) and solar thermal energy, wind energy, hydropower, biomass, and geothermal energy in the renewable energy sources. These energy systems work effectively but it is vital to consider its visual effect on the external appearance of the building.