• Title/Summary/Keyword: Path Finding

Search Result 558, Processing Time 0.031 seconds

Implementing Path-Finding Agents for Simulation Environments

  • Oh, Sang-Keon;Kim, Chang-Hyun;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.93.2-93
    • /
    • 2002
  • $\textbullet$ Design of Path-Finding Agents in Game Programming $\textbullet$ Computational Efficiency vs. Realistic Motion $\textbullet$ Path-Finding by Planning $\textbullet$ Path-Finding by Behavior-based Control $\textbullet$ implementation and Test of Path-Finding Program

  • PDF

PathFind Method Research (PathFinding Method 연구)

  • Choi, Won-Jin;Gu, Bon-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.696-698
    • /
    • 2022
  • 게임에서는 장애물이 가로 막고 있을 때 길 찾기 알고리즘이 요구된다. Path Finding Method 는 길과 장애물을 고려하여 목적지까지의 경로를 찾는 방법을 말한다. A* 알고리즘은 이런 복잡한 미로 찾기에 최적화된 Path Finding 알고리즘이다. 하지만, 모바일 같은 저비용 기기에서 A* 알고리즘을 사용하기엔 단순한 지형에서도 연산 부하가 발생할 수 있다. 본 논문에서는 가상의 공간에서 Grid를 구축하여, 통행이 가능한 곳과 불가능한 곳을 나누어 최종 지점에 도달할 수 있도록 하는 방식을 제안한다. 본 논문에서 제시한 Path Finding Method 는 최종 지점이 막다른 길인 경우 가장 가까운 이동 가능한 경로로 길을 안내하도록 설계하여 예외 상황에 대처했다. 대표적인 길 찾기 알고리즘인 Dijkstra 알고리즘은 최소 비용을 고려해서 최단으로 가는 거리를 비교하여 길을 나타낼 수 있다. 하지만, Dijkstra 알고리즘 경우 비용이 양수가 아닌 음수의 경우 무한 루프에 빠지는 등 결과 값이 제대로 나오지 않을 수 있다. 본 논문에서 제안한 Path Finding Method 는 최소 비용을 노드별로 비교하는 방식이 아닌 초기 비용을 알 수 없는 분야에 쉽게 사용할 수 있다. 본 논문에서는 제안한 Path Finding Method 를 적용하여 Web 게임을 제작하는 것에 성공하였다. 향후, Path Finding Method 결과에 위치 정렬 알고리즘을 적용하여, 중복된 지역을 가는 확률을 최소화하면서 정리된 Path 가 돌출되도록 연구할 예정이다. 본 논문의 Path Finding Method 은 게임 개발 분야에 적극 기여되길 바란다.

A Dynamic Path-Finding Method Avoiding Moving Obstacles in 3D Game Environment (3D게임에서 이동 장애물을 고려한 동적 경로 탐색 기법)

  • Kwon, Oh-Ik;WhangBo, Teag-Keun
    • Journal of Korea Game Society
    • /
    • v.6 no.3
    • /
    • pp.3-12
    • /
    • 2006
  • Path-finding, one of the traditional Game A.I. problems, becomes an important issue to make games more realistic. Due to the limited resources in the computer system, path-finding systems sometimes produce a simplified and unrealistic path. The most relent researches have been focused on the path-finding avoiding only static obstacles. Various moving obstacles are however deployed in real games, a method avoiding those obstacles and producing a smooth path is necessary. In this paper, navigation mesh is used to represent 3D space and its topological characteristics are used for path-finding. Intellectual repulser and attractor are also used to avoid moving obstacles and to find an optimal path. We have evaluated the path produced by the method proposed in this paper and verified its usability in real game.

  • PDF

A Path Finding Algorithm based on an Abstract Graph Created by Homogeneous Node Elimination Technique (동일 특성 노드 제거를 통한 추상 그래프 기반의 경로 탐색 알고리즘)

  • Kim, Ji-Soo;Lee, Ji-Wan;Cho, Dea-Soo
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.4
    • /
    • pp.39-46
    • /
    • 2009
  • Generally, Path-finding algorithms which use heuristic function may occur a problem of the increase of exploring cost in case of that there is no way determined by heuristic function or there are 2 way more which have almost same cost. In this paper, we propose an abstract graph for path-finding with dynamic information. The abstract graph is a simple graph as real road network is abstracted. The abstract graph is created by fixed-size cells and real road network. Path-finding with the abstract graph is composed of two step searching, path-finding on the abstract graph and on the real road network. We performed path-finding algorithm with the abstract graph against A* algorithm based on fixed-size cells on road network that consists of 106,254 edges. In result of evaluation of performance, cost of exploring in path-finding with the abstract graph is about 3~30% less than A* algorithm based on fixed-size cells. Quality of path in path-finding with the abstract graph is, However, about 1.5~6.6% more than A* algorithm based on fixed-size cells because edges eliminated are not candidates for path-finding.

  • PDF

Multiple Path-Finding Algorithm in the Centralized Traffic Information System (중앙집중형 도로교통정보시스템에서 다중경로탐색 알고리즘)

  • 김태진;한민흥
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.183-194
    • /
    • 2001
  • The centralized traffic information system is to gather and analyze real-time traffic information, to receive traffic information request from user, and to send user processed traffic information such as a path finding. Position information, result of destination search, and other information. In the centralized traffic information system, a server received path-finding requests from many clients and must process clients requests in time. The algorithm of multiple path-finding is needed for a server to process clients request, effectively in time. For this reason, this paper presents a heuristic algorithm that decreases time to compute path-finding requests. This heuristic algorithm uses results of the neighbor nodes shortest path-finding that are computed periodically. Path-finding results of this multiple path finding algorithm to use results of neighbor nodes shortest path-finding are the same as a real optimal path in many cases, and are a little different from results of a real optimal path in non-optimal path. This algorithm is efficiently applied to the general topology and the hierarchical topology such as traffic network. The computation time of a path-finding request that uses results of a neighbor nodes shortest path-finding is 50 times faster than other algorithms such as one-to-one label-setting and label-correcting algorithms. Especially in non-optimal path, the average error rate is under 0.1 percent.

  • PDF

Mobile Robot Path Finding Using Invariant Landmarks

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.3
    • /
    • pp.178-184
    • /
    • 2016
  • This paper proposes a new path-finding scheme using viewpoint-invariant landmarks. The scheme introduces the concept of landmark detection in images captured with a vision sensor attached to a mobile robot, and provides landmark clues to determine a path. Experiment results show that the scheme efficiently detects landmarks with changes in scenes due to the robot's movement. The scheme accurately detects landmarks and reduces the overall landmark computation cost. The robot moves in the room to capture different images. It can efficiently detect landmarks in the room from different viewpoints of each scene. The outcome of the proposed scheme results in accurate and obstacle-free path estimation.

A Distributed Path-Finding Algorithm for Distributed Metabolic Pathways (분산된 대사경로네트워크에 대한 경로검색을 위한 분산알고리즘)

  • Lee, Sun-A;Lee, Keon-Myung;Lee, Seung-Joo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.425-430
    • /
    • 2005
  • Many problems can be formulated in terms nf graphs and thus solved by graph-theoretic algorithms. This paper is concerned with finding paths between nodes over the distributed and overlapped graphs. The proposed method allows multiple agents to cooperate to find paths without merging the distributed graphs. For each graph there is a designated agent which is charged of providing path-finding service for hot graph and initiating the path-finding tasks of which path starts from the graph. The proposed method earlier on constructs an abstract graph so-called viewgraph for the distributed overlapped graphs and thus enables to extract the information about how to guide the path finding over the graphs. The viewgraph is shared by all agents which determine how to coordinate other agents for the purpose of finding paths. Each agent maintains the shortest path information among the nodes which are placed in different overlapped subgraphs of her graph. Once an agent is asked to get a path from a node on her graph to another node on another's graph, she directs other agents to provide the necessary information for finding paths.

Path-finding Algorithm using Heuristic-based Genetic Algorithm (휴리스틱 기반의 유전 알고리즘을 활용한 경로 탐색 알고리즘)

  • Ko, Jung-Woon;Lee, Dong-Yeop
    • Journal of Korea Game Society
    • /
    • v.17 no.5
    • /
    • pp.123-132
    • /
    • 2017
  • The path-finding algorithm refers to an algorithm for navigating the route order from the current position to the destination in a virtual world in a game. The conventional path-finding algorithm performs graph search based on cost such as A-Star and Dijkstra. A-Star and Dijkstra require movable node and edge data in the world map, so it is difficult to apply online games with lots of map data. In this paper, we provide a Heuristic-based Genetic Algorithm Path-finding(HGAP) using Genetic Algorithm(GA). Genetic Algorithm is a path-finding algorithm applicable to game with variable environment and lots of map data. It seek solutions through mating, crossing, mutation and evolutionary operations without the map data. The proposed algorithm is based on Binary-Coded Genetic Algorithm and searches for a path by performing a heuristic operation that estimates a path to a destination to arrive at a destination more quickly.

Learning Heuristics for Tactical Path-finding in Computer Games (컴퓨터 게임에서 전술적 경로 찾기를 위한 휴리스틱 학습)

  • Yu, Kyeon-Ah
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.9
    • /
    • pp.1333-1341
    • /
    • 2009
  • Tactical path-finding in computer games is path-finding where a path is selected by considering not only basic elements such as the shortest distance or the minimum time spend but also tactical information of surroundings when deciding character's moving trajectory. One way to include tactical information in path-finding is to represent a heuristic function as a sum of tactical quality multiplied by a weighting factor which is.. determined based on the degree of its importance. The choice of weighting factors for tactics is very important because it controls search performance and the characteristic of paths found. In this paper. we propose a method for improving a heuristic function by adjusting weights based on the difference between paths on examples given by a level designer and paths found during the search process based on the CUITent weighting factors. The proposed method includes the search algorithm modified to detect search errors and learn heuristics and the perceptron-like weight updating formular. Through simulations it is demonstrated how different paths found by tactical path-finding are from those by traditional path-finding. We analyze the factors that affect the performance of learning and show the example applied to the real game environments.

  • PDF

Shortest Path-Finding Algorithm using Multiple Dynamic-Range Queue(MDRQ) (다중 동적구간 대기행렬을 이용한 최단경로탐색 알고리즘)

  • Kim, Tae-Jin;Han, Min-Hong
    • The KIPS Transactions:PartA
    • /
    • v.8A no.2
    • /
    • pp.179-188
    • /
    • 2001
  • We analyze the property of candidate node set in the network graph, and propose an algorithm to decrease shortest path-finding computation time by using multiple dynamic-range queue(MDRQ) structure. This MDRQ structure is newly created for effective management of the candidate node set. The MDRQ algorithm is the shortest path-finding algorithm that varies range and size of queue to be used in managing candidate node set, in considering the properties that distribution of candidate node set is constant and size of candidate node set rapidly change. This algorithm belongs to label-correcting algorithm class. Nevertheless, because re-entering of candidate node can be decreased, the shortest path-finding computation time is noticeably decreased. Through the experiment, the MDRQ algorithm is same or superior to the other label-correcting algorithms in the graph which re-entering of candidate node didn’t frequently happened. Moreover the MDRQ algorithm is superior to the other label-correcting algorithms and is about 20 percent superior to the other label-setting algorithms in the graph which re-entering of candidate node frequently happened.

  • PDF