• 제목/요약/키워드: Path tracking error

검색결과 105건 처리시간 0.03초

로봇의 추적오차 감소를 위한 궤적계획방법 (Robot Path Planning Method for Tracking Error Reduction)

  • 김동준;김갑일;박용식
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권3호
    • /
    • pp.143-148
    • /
    • 2001
  • A lot of robot trajectory tracking methods are proposed to enhance the tracking error, but irregular tracking errors are always accompanied and very hard to reduce it. Up to now, these irregular tracking errors are reduced by introducing more complicated control algorithms. But, it is intuitively obvious to reduce only the big errors selectively in the irregular ones for the better performance instead of using more complicated control algorithms. By the characteristics of the robot, big tracking errors of the end-effector are generated mostly due to the fast moving of joint. So, in this paper, we introduce a new method which reduce the big tracking errors by clippings the joint velocity with the constraint of given path. Using this method, desired trajectory tracking is obtained within the far reduced error bound. Also, this method is successfully applied to generate the path-constrained error reducing trajectories for 2-axis SCARA type robot.

  • PDF

Path Constraint한 궤적 계획법의 위치 오차 감소에 관한 연구 (A Study on the Path Constraint Error Reducing Trajectory Planning)

  • 황승재;박세웅;김동준;김갑일;김대원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.843-845
    • /
    • 1995
  • There are a variety of trajectory and control algorithms available for robot trajectory tracking. Before using the enhanced trajectory and control algorithms to reduce the tracking error, we introduce the new method which reduces the tracking error by clipping the joint velocity. A lot of robot trajectory tracking methods are proposed to enhance the robot tracking, but irregular tracking errors are always accompanied. Up to now, these irregular tracking errors are gradually but uniformly reduced by introducing more complicated control algorithms. It is intuitively obvious to reduce only the big errors selectively in the irregular ones for the better performance. By heuristic method, big tracking errors in these irregular ones are assumed mostly due to the fast moving of joint with respect to the same tracking and control method. So, in this paper, we introduce a new method which reduce the big tracking errors by clippings the joint velocity with the constraint of given path. Using this method, desired trajectory tracking is obtained within the far reduced error bound. Also, this method is successfully applied to generate the path-constrained error reducing trajectories for 2-axis SCARA type robot.

  • PDF

농업용 무한궤도형 자율주행 플랫폼의 경로 추종 및 추종 성능 향상을 위한 가변형 전방 주시거리 알고리즘 개발 (Development of Path Tracking Algorithm and Variable Look Ahead Distance Algorithm to Improve the Path-Following Performance of Autonomous Tracked Platform for Agriculture)

  • 이규호;김봉상;최효혁;문희창
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.142-151
    • /
    • 2022
  • With the advent of the 4th industrial revolution, autonomous driving technology is being commercialized in various industries. However, research on autonomous driving so far has focused on platforms with wheel-type platform. Research on a tracked platform is at a relatively inadequate step. Since the tracked platform has a different driving and steering method from the wheel-type platform, the existing research cannot be applied as it is. Therefore, a path-tracking algorithm suitable for a tracked platform is required. In this paper, we studied a path-tracking algorithm for a tracked platform based on a GPS sensor. The existing Pure Pursuit algorithm was applied in consideration of the characteristics of the tracked platform. And to compensate for "Cutting Corner", which is a disadvantage of the existing Pure Pursuit algorithm, an algorithm that changes the LAD according to the curvature of the path was developed. In the existing pure pursuit algorithm that used a tracked platform to drive a path including a right-angle turn, the RMS path error in the straight section was 0.1034 m and the RMS error in the turning section was measured to be 0.2787 m. On the other hand, in the variable LAD algorithm, the RMS path error in the straight section was 0.0987 m, and the RMS path error in the turning section was measured to be 0.1396 m. In the turning section, the RMS path error was reduced by 48.8971%. The validity of the algorithm was verified by measuring the path error by tracking the path using a tracked robot platform.

Path Tracking Controller Design and Simulation for Korean Lunar Lander Demonstrator

  • Yang, Sungwook;Son, Jongjun;Lee, Sangchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권1호
    • /
    • pp.102-109
    • /
    • 2015
  • In Korea, Lunar exploration program has been prepared with the aim of launching in the 2020's. As a part of it, a lunar lander demonstrator was developed, which was the model for verifying the system such as structure, propulsion, and control system, before launching into the deep space. This paper deals with the path tracking performance of the lunar lander demonstrator with respect to the thruster controller based on Pulse Width Pulse Frequency Modulator (PWPFM) and Pulse Width Modulator (PWM). First, we derived equations of motion, considering the allocation of the thrusters, and designed the path tracking controller based on Euler angle. The signal generated from the path tracking controller is continuous, so PWPFM and PWM modulator are adopted for generating ON/OFF signal. Finally, MATLAB simulation is performed for evaluating the path tracking ability. We compared the path tracking performances of PWPFM and PWM based thrust controller, using performance measures such as the total impulse and the position error with respect to the desired path.

자율주차 상황에서 차량 구속 조건 고려에 따른 경로 계획 및 추종 성능의 비교 분석 (A Comparative Analysis of Path Planning and Tracking Performance According to the Consideration of Vehicle's Constraints in Automated Parking Situations)

  • 김민수;안준우;김민성;신민용;박재흥
    • 로봇학회논문지
    • /
    • 제16권3호
    • /
    • pp.250-259
    • /
    • 2021
  • Path planning is one of the important technologies for automated parking. It requires to plan a collision-free path considering the vehicle's kinematic constraints such as minimum turning radius or steering velocity. In a complex parking lot, Rapidly-exploring Random Tree* (RRT*) can be used for planning a parking path, and Reeds-Shepp or Hybrid Curvature can be applied as a tree-extension method to consider the vehicle's constraints. In this case, each of these methods may affect the computation time of planning the parking path, path-tracking error, and parking success rate. Therefore, in this study, we conduct comparative analysis of two tree-extension functions: Reeds-Shepp (RS) and Hybrid Curvature (HC), and show that HC is a more appropriate tree-extension function for parking path planning. The differences between the two functions are introduced, and their performances are compared by applying them with RRT*. They are tested at various parking scenarios in simulation, and their advantages and disadvantages are discussed by computation time, cross-track error while tracking the path, parking success rate, and alignment error at the target parking spot. These results show that HC generates the parking path that an autonomous vehicle can track without collisions and HC allows the vehicle to park with lower alignment error than those of RS.

GPS 정보를 이용한 지능형 차량의 자율 경로추적 제어 (Autonomous Tracking Control of Intelligent Vehicle using GPS Information)

  • 정병묵;석진우;조지승;이재원
    • 한국정밀공학회지
    • /
    • 제25권10호
    • /
    • pp.58-66
    • /
    • 2008
  • In the development of intelligent vehicles, path tracking of unmanned vehicle is a basis of autonomous driving and automatic navigation. It is very important to find the exact position of a vehicle for the path tracking, and it is possible to get the position information from GPS. However the information of GPS is not the current position but the past position because a vehicle is moving and GPS has a time delay. In this paper, therefore, the moving distance of a vehicle is estimated using a direction sensor and a velocity sensor to compensate the position error of GPS. In the steering control, optimal fuzzy rules for the path tracking can be found through the simulation of Simulink. Real driving experiments show the fuzzy rules are good for the steering control and the position error of GPS is well compensated by the proposed estimation method.

접근 각도 개념을 이용한 과소 작동기 무인 잠수정의 경로 추적 제어기 설계 (Design of Path Tracking Controller for Underactuated Autonomous Underwater Vehicle Using Approach Angle Concept)

  • 김경주;최윤호;박진배
    • 한국지능시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.225-231
    • /
    • 2012
  • 본 논문에서는 접근 각도 개념을 이용하여 과소작동기 형태의 무인 수중 잠수정의 경로 추적 제어기 설계 방법을 제안한 다. 과소 작동기 형태를 가지는 무인 수중 잠수정은 종 방향 추진력과 회전력에 의해 속도와 방향을 조절하나, 횡 방향 추 진기가 없기 때문에 횡 방향에 대한 움직임을 제어 할 수 없다. 이러한 무인 수중 잠수정의 과소 작동기 문제를 해결하기 위하여 본 논문에서는 기준 경로에 대한 접근 각도 개념을 제안하고, 제안한 접근 각도를 이용하여 경로 추적 제어기를 설 계한다. 이를 위해 동체 고정 좌표계에서 새로운 오차 방정식을 구하고, 리아푸노프 방법을 기반으로 경로 추적 제어기를 설계한다. 본 논문에서는 컴퓨터 시뮬레이션 통해 제안한 방법에 의해 설계된 제어기의 성능을 검증한다.

Estimation of Allowable Path-deviation Time in Free-space Optical Communication Links Using Various Aircraft Trajectories

  • Kim, Chul Han
    • Current Optics and Photonics
    • /
    • 제3권3호
    • /
    • pp.210-214
    • /
    • 2019
  • The allowable path-deviation time of aircraft in a free-space optical communication system has been estimated from various trajectories, using different values of aircraft speeds and turn rates. We assumed the existence of a link between the aircraft and a ground base station. First, the transmitter beam's divergence angle was calculated through two different approaches, one based on a simple optical-link equation, and the other based on an attenuation coefficient. From the calculations, the discrepancy between the two approaches was negligible when the link distance was approximately 110 km, and was under 5% when the link distance ranged from 80 to 140 km. Subsequently, the allowable path-deviation time of the aircraft within the tracking-error tolerance of the system was estimated, using different aircraft speeds, turn rates, and link distances. The results indicated that the allowable path-deviation time was primarily determined by the aircraft's speed and turn rate. For example, the allowable path-deviation time was estimated to be ~3.5 s for an aircraft speed of 166.68 km/h, a turn rate of $90^{\circ}/min$, and a link distance of 100 km. Furthermore, for a constant aircraft speed and turn rate, the path-deviation time was observed to be almost unchanged when the link distance ranged from 80 to 140 km.

대차가 있는 무인 운반차의 경로 추종 오차 감소 방법 (A Method for Reducing Path Tracking Errors of an AGV with a Trailer)

  • 이지영;성영휘
    • 전기학회논문지
    • /
    • 제63권1호
    • /
    • pp.132-138
    • /
    • 2014
  • The use of AGVs(Automated Guided Vehicles) are increasing in many factories. The most widely used AGV system is that magnetic tapes are attached on the factory floor to make guided path and an AGV equipped with a magnetic sensor follows the path by sensing magnetic flux. In this AGV system, usually a magnetic sensor is attached on the front end of an AGV to detect the guided path and the sensor generates analog voltages proportional to the magnetic flux. The problem is that the AGV in use has rather big tracking errors because the accurate orientation of the AGV can not be detected by using only one magnetic sensor. In this paper, we propose a method to minimize the path tracking errors. In our method, one additional sensor is attached on the rear end of the AGV to estimate the orientation of the AGV and to control more accurately the AGV according to the estimated orientation of the AGV. We performed several experiments and the results successfully show the feasibility of the proposed method.

새로운 동시통화 검출 알고리즘 (A New Double-Talk Detection Algorithm)

  • 정홍희;김현태;박장식;손경식
    • 한국멀티미디어학회논문지
    • /
    • 제11권3호
    • /
    • pp.281-291
    • /
    • 2008
  • 본 논문에서 반향 제거기의 반향 경로 변화를 추적하면서 근단 신호를 검출할 수 있는 새로운 동시통화 알고리즘을 제안한다. 이 방법은 채널 입력 신호와 추정 오차 신호 간의 교차상관도와 마이크 입력 신호와 추정 오차 신호간의 정규화된 교차상관도를 이용한다. 이 두 교차상관도의 문턱치를 적절히 조합하여 이 알고리듬은 동시통화의 발생과 반향 경로의 변화를 구별한다. 이 방법은 반향경로의 변화를 추적하면서 동시통화를 검출할 수 있다. 동시통화기간동안 근단 신호에 의해 반향제거기의 적응필터계수가 오조정되는 것을 막는다. 이 동안 반향제거기는 반향경로의 변화를 계속 추적할 수 있다. 컴퓨터 시뮬레이션을 통하여 제안된 알고리즘이, 반향 경로 변화 추적과 동시통화를 검출하면서, ERLE 관점에서 Ye등의 알고리즘이나 NLMS 알고리즘보다 우수함이 입증되었다.

  • PDF