• Title/Summary/Keyword: Pavement

Search Result 2,094, Processing Time 0.031 seconds

Estimation of Tire-Pavement Noise for Concrete Pavement by using Mean Profile Depth (Mean Profile Depth를 이용한 콘크리트 포장의 타이어-노면소음 산정)

  • Hong, Seong Jae;Hyun, Tak Jib;Lee, Seung Woo;Kim, Hyung Bae;Kwon, Oh Sun
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.9-16
    • /
    • 2013
  • PURPOSES: There is a need to develop a method to incorporate tire-pavement noise in the pavement management system. Tire-pavement noise highly depends on the characteristics of pavement texture. Therefore, estimation of texture characteristics may give useful information to predict tire-pavement noise. This study aimed to find the relationship between tire-pavement noise and MPD(Mean Profile Depth) for concrete pavement. METHODS: MPD and tire-pavement noise were collected on the number of expressway sections including Central Inland Test Road in Korea. Statistical analysis was performed to find the correlationship between MPD and tire-pavement noise. In addition, multiple regression analysis to find the tire-pavement noise based on MPD and type of concrete pavement texture. RESULTS: Linear relationship between MPD and tire-pavement noise is observed for concrete pavement. Furthermore, a forensic equation to estimate tire-pavement noise based on MPD and texture types of concrete pavement is suggested. CONCLUSIONS: Tire-pavement noise on concrete pavement can be predicted based on the consideration of texture type and MPD estimation.

Application of Markov Chains and Monte Carlo Simulations for Pavement Construction Engineering

  • Nega, Ainalem;Gedafa, Daba
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1043-1050
    • /
    • 2022
  • Markov chains and Monte Carlo Simulation were applied to account for the probabilistic nature of pavement deterioration over time using data collected in the field. The primary purpose of this study was to evaluate pavement network performance of Western Australia (WA) by applying the existing pavement management tools relevant to WA road construction networks. Two approaches were used to analyze the pavement networks: evaluating current pavement performance data to assess WA State Road networks and predicting the future states using past and current pavement data. The Markov chains process and Monte Carlo Simulation methods were used to predicting future conditions. The results indicated that Markov chains and Monte Carlo Simulation prediction models perform well compared to pavement performance data from the last four decades. The results also revealed the impact of design, traffic demand, and climate and construction standards on urban pavement performance. This study recommends an appropriate and effective pavement engineering management system for proper pavement design and analysis, preliminary planning, future pavement maintenance and rehabilitation, service life, and sustainable pavement construction functionality.

  • PDF

Three-dimensional analysis of flexible pavement in Nepal under moving vehicular load

  • Ban, Bijay;Shrestha, Jagat K.;Pradhananga, Rojee;Shrestha, Kshitij C.
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.371-393
    • /
    • 2022
  • This paper presents a three-dimensional flexible pavement simulated in ANSYS subjected to moving vehicular load on the surface of the pavement typical for the road section in Nepal. The adopted finite element (FE) model of pavement is validated with the classical theoretical formulations for half-space pavement. The validated model is further utilized to understand the damping and dynamic response of the pavement. Transient analysis of the developed FE model is done to understand the time varying response of the pavement under a moving vehicle. The material properties of pavement considered in the analysis is taken from typical road section used in Nepal. The response quantities of pavement with nonlinear viscoelastic asphalt layer are found significantly higher compared to the elastic pavement counterpart. The structural responses of the pavement decrease with increase in the vehicle speed due to less contact time between the tires of the vehicle and the road pavement.

Evaluation of Surface Temperature Characteristics of Water Retaining Pavement using Sepiolite and Charcoal (해포석과 숯을 이용한 보수성포장의 노면온도 특성 평가)

  • Lee, Soo-Hyung;Lee, Hak-Ju;Kim, Je-Won;Yoo, In-Kyoon
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.357-360
    • /
    • 2007
  • Water retaining pavement is a pavement to lower the surface temperature by using evaporation of the water that the pavement contains when the pavement is heated by the sun in the daytime. The objective of this study is to develop water retaining materials. In this study we evaluated the practical application of a sepiolite and a charcoal as a water retaining material. We produced dense grade asphalt pavement, porous asphalt pavement, semi-rigid Pavement, semi-rigid pavement included a charcoal and semi-rigid pavement included a sepiolite, and then tested surface temperature characteristics. The test result says that water retaining pavements using a sepiolite and a charcoal lower surface temperature more than $10^{\circ}C$ compared to dense grade asphalt pavement. We confirm the practical application of a sepiolite and a charcoal as a water retaining material according to the test results.

  • PDF

Thermal Characteristics of Permeable Block Pavements for Landscape Construction (조경용 투수성 블록포장의 열특성)

  • Han, Seung-Ho;Ryu, Nam-Hyong;Yoon, Yong-Han;Kim, Won-Tae;Kang, Jin-Hyoung
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.573-580
    • /
    • 2008
  • This study aims to measure and to analyze the characteristics of thermal environment of the various permeable pavement materials such as a break stone pavement (Green block cubic), soil protection pavement (Soil tector), soil cement pavement and ceramic brick pavement under the summer outdoor environment. The thermal environment characteristics measured in the study includes the changes of surface temperature during the day, and long and short wave radiation of each pavement surface. The experimental condition is based on the data on the hottest temperature (August 9, 2006, $37.1^{\circ}C$) of the year. The albedo was the highest on the break stone pavement(0.8) from 12:00 to 14:00. The albedo of the ceramic brick pavement, a soil tector pavement and soil cement pavement were 0.35, 0.29 and 0.27 from 12:00 to 14:00, respectively. The peak surface temperature and long wave radiation was the highest on the soil protection pavements($56.6^{\circ}C$/627 W/$m^2$). The peak surface temperatures and long wave radiation on the ceramic brick pavement, a stone brick pavement and soil cement pavement were $51.7^{\circ}C$/627 W/$m^2$, $48.8^{\circ}C$/607 W/$m^2$ and $45.9^{\circ}C$/582 W/$m^2$, respectively. The heat environment was better on the break stone pavement than on the other pavements. This is mainly due to the high albedo of the break stone pavement(0.8) while the albedo value of a ceramic brick pavement, a soil tactor pavement and soil cement pavement were 0.35. 0.29 and 0.27. Large heat capacity($2,629kJ/m^3{\cdot}K$) of the stone brick pavements also contributes to this difference. The heat environment was better on the soil cement pavement than the soil tector pavement. This is mainly due to the evaporation of the soil cement pavement while the active evaporation of the soil tactor pavement was not continued after two days from the rainfall event. To improve the thermal environments in the urban area, it is recommended to raise the albedo of the pavements by brightening the surface color of the pavement materials. Further studies on the pavement materials and the construction methods which can enhance the continuous evapotranspiration from the pavements surface are needed.

Performance Evaluation of Interlocking Block Pavement for Low Speed Highway (인터로킹 블록포장의 저속도로 적용성 평가)

  • Lin, Wuguang;Ryu, SungWoo;Lee, ByeongTae;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • PURPOSES : This study aims to evaluate the performance of interlocking block pavement system for low speed highway. METHODS : Through on-site monitoring, environmental impact assessment of interlocking block pavement such as heat island reduction, traffic safety, noise pollution were evaluated as compared with asphalt pavement. Also the pavement condition and roughness were evaluated according to performance period. RESULTS : Surface temperature of interlocking block pavement was about 7 degree lower than asphalt pavement in midsummer. Compared to asphalt pavement, vehicle speed reduction effect of interlocking block pavement was about 2kph. For low speed driving, the noise pollution was measured at a similar level for both asphalt and interlocking block pavement. After 42month service period, the breakage of block was only 0.24% for the whole surveyed area. IRI of interlock block pavement was estimated within the range of 5~8m/km. CONCLUSIONS : Depending on the performance monitoring results such as heat island reduction, providing traffic safety and keeping a good pavement condition for a long service period, it assures that interlocking block pavement was applicable for low speed road.

Performance Evaluation of Carbon-Reducing Soil Pavement using Inorganic Binder (무기계 바인더를 이용한 탄소저감형 흙포장의 성능평가)

  • Yoo, Ji Hyeung;Kawk, Gi Bong;Kim, Dae Sung
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.19-26
    • /
    • 2015
  • PURPOSES : This study intends to develop an inorganic soil pavement material using industrial by-products and to evaluate its applicability as a road pavement material. METHODS : In this study, a compressive strength experiment was conducted based on the NaOH solution molarity and water glass content to understand the strength properties of the soil pavement material according to the mixing ratio of alkali activator. In addition, the strength characteristic of the inorganic soil pavement material was analyzed based on the binder content. The performance of the soil pavement was evaluated by conducing an accelerated pavement test and a falling weight deflectometer (FWD) test. RESULTS : As a result of the soil pavement material test based on the mixture ratio of alkali activator, it was identified that the activator that mixed a 10 M NaOH solution to water glass in a 5:5 ratio is appropriate. As a result of the inorganic soil pavement materials test based on the binder content, the strength development increased sharply when the amount of added binder was over 300 kg; this level of binder content satisfied 28 days of 18 MPa of compression strength, which is the standard for existing soil pavement design. According to the measured results of the FWD test, the dynamic k-value did not show a significant difference before or after the accelerated pavement testing. Furthermore, the effective modulus decreased by approximately 50%, compared with the initial effective modulus for pedestrian pavement. CONCLUSIONS : Based on these results, inorganic soil pavement can be applied by changing the mixture proportions according to the use of the pavement, and can be utilized as road pavement from light load roads to access roads.

Methodology for Benefit Evaluation according to Maintenance Method and Timing of National Highway Pavement Section (국도포장 유지보수 공법 및 시기에 따른 편익산정 방안)

  • Do, Myungsik;Kwon, Soo Ahn;Choi, Seunghyun
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.91-99
    • /
    • 2013
  • PURPOSES : This study aims at proposing the methodology for benefit evaluations in pavement maintenance methods and timings using KoPMS(Korean Pavement Management System) software which was developed for efficient pavement management. METHODS : This study classified pavement sections into 4 clusters considering AADT(Annual Average Daily Traffic) and ESAL(Equivalent Single-Axle Load) using cluster analysis and used the deterioration models in each cluster. Increased user costs due to pavement deterioration as time goes by and agent costs for maintenance were estimated. Based on deterioration model and KoPMS software, Methodology for benefit evaluation was proposed in pavement maintenance methods and with/without implementation using real pavement section data. RESULTS : This study verified that considering agent costs only would be constrained to decide pavement maintenance methods and timings, and ascertained that decision making with agent and user costs would be effective. In addition, this study revealed that pavement maintenance methods and timings can be affected by AADT and ESAL and frequent pavement maintenances can be more efficient for benefits in pavement sections with more AADT and ESAL. Also this study found that user costs would be more affected to decision making than agent costs. Moreover, Delay of conducting pavement maintenance caused increased vehicle operating costs and environmental costs because of poor conditions of pavements. CONCLUSIONS : This study proposed LCCA and benefit estimation methodology of pavement with considering agent and user costs. The results of this study can be used for baseline data of efficient pavement asset management.

The Effect of Texture Wavelength on the Tire-Pavement Noise in Asphalt Concrete Pavement (아스팔트 노면조직의 파장길이가 타이어-노면소음에 미치는 영향)

  • Hong, Seong Jae;Park, Sung Wook;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • PURPOSES : Recently, attempts have been made to evaluate tire-pavement noise based on a measure of Mean Profile Depth (MPD). However, equivalent values of MPD appear to correspond to different levels of tire-pavement noise, which indicates that other factors such as texture wavelength need to be included to improve the accuracy of noise prediction. A single index to represent texture wavelength is proposed in this study. A consistent relationship between tire-pavement noise and texture wavelength on asphalt concrete pavement is observed. METHODS : Profile data and tire-pavement noise data were collected from a number of expressway sections in Korea. In addition, texture wavelength was defined by a Peak Number (PN), which was calculated using profile data. Statistical analysis was performed to find the relationship between the PN and tire-pavement noise. RESULTS : As a result of this study, a linear relationship between PN and tire-pavement noise is observed on asphalt concrete pavement. CONCLUSIONS : Tire-pavement noise on asphalt concrete pavement can be predicted from PN information.

Development of Prediction Method for Highway Pavement Condition (포장상태 예측방법 개선에 관한 연구)

  • Park, Sang-Wook;Suh, Young-Chan;Chung, Chul-Gi
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.199-208
    • /
    • 2008
  • Prediction the performance of pavement provides proper information to an agency on decision-making process; especially evaluating the pavement performance and prioritizing the work plan. To date, there are a number of approaches to predict the future deterioration of pavements. However, there are some limitation to proper prediction of the pavement service life. In this paper, pavement performance model and pavement condition prediction model are developed in order to improve pavement condition prediction method. The prediction model of pavement condition through the regression analysis of real pavement condition is based on the probability distribution of pavement condition, which set to 5%, 15%, 25% and 50%, by condition of the pavement and traffic volume. The pavement prediction model presented from the behavior of individual pavement condition which are set to 5%, 15%, 25% and 50% of probability distribution. The performance of the prediction model is evaluated from analyzing the average, standard deviation of HPCI, and the percentage of HPCI which is lower than 3.0 of comparable section. In this paper, we will suggest the more rational method to determine the future pavement conditions, including the probabilistic duration and deterministic modeling methods regarding the impact of traffic volume, age, and the type of the pavement.

  • PDF