• Title/Summary/Keyword: Payload Powering

Search Result 3, Processing Time 0.021 seconds

Design Method and Analysis for Current Limit Charger of Battery System for Regulating CDE Power of Satellite

  • Kim, Kyudong
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.74-78
    • /
    • 2020
  • The cooler driver electronics (CDE) for maintaining a low temperature of a satellite payload IR sensor has a compressor with a pulsation current load when in operation. This pulsation current creates a large voltage fluctuation and may negatively affect both the load and regulated bus stability. Thus, a CDE power conditioning system has a battery for use as a buffer that is connected in front of the CDE load line. In this system, a battery charger limiter circuit is required to protect from an over-charge of the battery and power to the load. In this study, an optimal design and parameter selection were developed and simulated.

Operational Mode Analysis of Cooler Driver Electronics in Satellite and System Safety Margin

  • Kim, Kyudong
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.79-84
    • /
    • 2020
  • Cooler driver electronics (CDE) for maintaining low temperature of the satellite payload IR sensor consists of a compressor that has a pulsation current load condition when it is operated. This pulsation current produces large voltage fluctuation, which affects both load and regulated bus stability. Thus, CDE power conditioning system consists of a primary bus, infrared power distribution unit for battery charging and protection, reverse current protection diode, and battery, which is used as a buffer. In this study, the operational mode analysis is performed by each part with equivalent impedance modeling verified through system level simulation. From this mode analysis, the safety margin for state of charge and open circuit voltage of the battery is determined for satisfying the minimum operational voltage of the CDE load.

A Study on the Optimization of the Design of Power Electric Ground Support Equipment according to the Increase in Power Demand due to the Increase in Satellite Power Demand and the Advancement of Satellite Payload (위성 탑재체 고도화에 따른 위성 전력요구도 증가 및 전력요구도 증가에 따른 전력계 전기지상지원장비 설계 최적화를 위한 고찰)

  • Su-Wan Bang;Hyoung-Ho Ko
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.88-96
    • /
    • 2023
  • KOMPSAT (Korean Multi-Purpose Satellite) is a Low-Earth-Orbit (LEO) satellite under development in Korea. Its performance has been steadily improving. At this time, power demand of the payload increased according to performance improvement of the payload. Accordingly, design of the satellite, such as design of the internal power supply device and the configuration of the solar array, was changed. Thus, many considerations are required according to an increase in power when designing power EGSE (Electric Ground Support Equipment) for supplying power to satellites and conduct satellite integration tests. This paper deals with matters to be considered when designing power EGSE according to changes in satellite power requirements according to payloads and increase in power requirements.