• Title/Summary/Keyword: Pediococcus acidilactici

Search Result 63, Processing Time 0.032 seconds

Milk Fermented with Pediococcus acidilactici Strain BE Improves High Blood Glucose Levels and Pancreatic Beta-Cell Function in Diabetic Rats

  • Widodo Widodo;Hanna Respati Putri Kusumaningrum;Hevi Wihadmadyatami;Anggi Lukman Wicaksana
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.170-183
    • /
    • 2023
  • This study evaluated the effects of milk fermented with Pediococcus acidilactici strain BE and Pediococcus pentosaceus strain M103 on diabetes in rats (Rattus norvegicus). The bacteria were separately used as starter cultures for milk fermentation, and the products were then fed to diabetic rats for 15 days. Blood glucose levels, immunohistochemical and histological indicators, lipid profiles, and total lactic acid bacterium counts were evaluated before and after treatment. The administration of milk fermented with P. acidilactici strain BE reduced blood glucose levels from 410.27±51.60 to 304.07±9.88 mg/dL (p<0.05), similar to the effects of metformin (from 382.30±13.39 mg/dL to 253.33±40.66 mg/dL, p<0.05). Increased insulin production was observed in diabetic rats fed milk fermented with P. acidilactici strain BE concomitant with an increased number and percentage area of immunoreactive beta-cells. The structure of insulin-producing beta-cells was improved in diabetic rats fed milk fermented with P. acidilactici strain BE or metformin (insulin receptor substrate scores of 5.33±0.94 and 3.5±0.5, respectively). This suggests that the administration of milk fermented with P. acidilactici BE potentially reduces blood glucose levels and improves pancreatic beta-cell function in diabetic rats.

Anti-Helicobacter pylori Activity of Pediococcus acidilactici GMB7330 Isolated from Infant Feces (신생아 분변에서 분리한 Pediococcus acidilactici GMB7330의 Helicobacter pylori에 대한 항균활성)

  • Kang Ji-Hee;Lee Myung-Suk
    • Korean Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.152-156
    • /
    • 2005
  • In the present study, lactic acid bacterium that has antibacterial activity against Helicobacter pylori was isolated from feces of newborn baby. The selection was based on the ability to inhibit the growth of H. pylori and to withstand harsh environmental conditions such as acidic pH and high bile concentration. By biochemical test and 16S rDNA sequencing, selected strain was turned out to be an Pediococcus acidilactici, therefore designated to P. acidilactici GMB7330. In order to investigate the inhibitory effects of P. acidilactici GMB7330 on the growth of H. pylori, we have tested in vitro studies such as cell viability and urease test. These results showed that antibacterial activity of P. acidilactici GMB7330 significantly decreased the viable cell count and urease activity of H. pylori. Antibacterial activity of P. acidilactici GMB7330 against H. pylori remained after pH adjustment to neutral, and the concentration of lactate produced from P. acidilactici GMB7330 was not enough to inhibit H. pylori. On the basis of the analysis by transmission electron microscope, it demonstrated that addition of P. acidilactici GMB7330 destroyed the cell structure of H. pylori. These results strongly suggested that P. acidilactici GMB7330 produce antibacterial substances to be able to inhibit the growth of H. pylori other than lactic acid.

Isolation of Plasmid DNA in Pediococci from Kimchi (김치의 Pediococci에 존재하는 Plasmid DNA 분리)

  • Park, Yun-Hee;Ryu, Uk-Sang;Jo, Do-Hyun
    • Applied Biological Chemistry
    • /
    • v.31 no.1
    • /
    • pp.33-37
    • /
    • 1988
  • Three species of Pediococci, Pediococcus pentosaceus, Pediococcus acidilactici and Pediococcus halophilus were isolated from Kimchi. P. pentosaceus and P. acidilactici showed inhibitory activity against Streptococcus faecalis, Pseudomonas sp., P20 and Vibrio parahaemolyticus. However, the growth of all test organisms was not inhibited by P. halophilus. Ten strains contained one to seven plasmids, ranging in size from 1 to 60 megadaltons.

  • PDF

Use of Bacteriocinogenic Pediococcus acidilactici in Sausage Fermentation

  • Kim, Wang-June;Hong, Seok-San;Cha, Seong-Kwan;Koo, Young-Jo
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.3
    • /
    • pp.199-203
    • /
    • 1993
  • The bacteriocin produced by Pediococcus acidilactici KFRI 168 exhibited a wide antimicrobial spectrum including many strains of lactic acid bacteria, Listeria monocytogenes, Staphylococcus aureus, and Enterococcus faecium by both disk and deferred assay methods. Inhibition of Lis. monocytogenes and Stph. aureus were observed only from deferred assay. Gram-negative bacteria were not inhibited. Bacteriocin production was observed at 10 h, and was maximized at 16 h in MRS broth incubated at $37^{\circ}C$. In a beaker sausage fermented with P. acidilactici KFRI 168, viable counts of Stph. aureus, Salmonella, Escherichia coli, Clostridium perfringens, and Lis. monocytogenes were reduced by 2.8, 2.3, 2.4, 0.7, and 0.5 log CFU/g, respectively. Inoculated P. acidilactici KFRI 168 maintained its viable count of more than $10^8$ CFU/g during the whole fermentation period, and it took less than 8 h to reduce sausage pH below 5.

  • PDF

Probiotic Properties and Immunomodulator Evaluation of the Potential Feed Additive Pediococcus acidilactici SRCM102607 (잠재적 사료첨가제로서 Pediococcus acidilactici SRCM102607의 생균제 특성 및 면역활성 효과)

  • Shin, Su-Jin;Ha, Gwangsu;Jeong, Su-Ji;Ryu, Myeong Seon;Kim, Jinwon;Yang, Hee-Jong;Kwak, Mi-Sun;Sung, Moon-Hee;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.896-904
    • /
    • 2020
  • The purpose of this study was to investigate the probiotic characteristics and immune activities of selected lactic acid bacterial (LAB) strains as feed additives in livestock. 301 LAB strains isolated from traditional fermented foods were first assessed for their antibacterial activity potential. Of the 301 isolates, five showed antibacterial activity against five livestock pathogens (Esherichia coli KCCM11234, Listeria monocytogens KCTC3710, Salmonella Typhimurium KCTC1926, Staphylococcus aureus KCCM11593, and Shigella flexneri KCTC2517). The probiotic characteristics of the five selected strains were also investigated by antioxidative activity, hemolysis, bile salt hydrolase, acid resistance and bile tolerance. The SRCM102607 strain was found to have superior probiotic properties and was selected for further experimentation. 16S rRNA gene sequencing showed that SRCM102607 is Pediococcus acidilactici, which was labeled as P. acidilactici SRCM102607 (KCCM 12246P). The survival characteristics of P. acidilactici SRCM102607 in artificial gastrointestinal conditions were assessed under exposed acidic (pH 2.0) and bile (0.5% and 1.0%) conditions. P. acidilactici SRCM102607 was also confirmed to have resistance to various antibiotics, including amikacin, gentamicin, vancomycin, and etc. The TNF-α production by P. acidilactici SRCM102607 was 171.86±4.00 ng/ml. These results show that P. acidilactici RCM102607 has excellent potential for use as a probiotic livestock feed additive.

Inhibitory Effect of Genomic DNA Extracted from Pediococcus acidilactici on Porphyromonas gingivalis Lipopolysaccharide-Induced Inflammatory Responses

  • Young Hyeon Choi;Bong Sun Kim;Seok-Seong Kang
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.101-112
    • /
    • 2023
  • This study aimed to assess whether genomic DNA (gDNA) extracted from Pediococcus acidilactici inhibits Porphyromonas gingivalis lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 cells. Pretreatment with gDNA of P. acidilactici K10 or P. acidilactici HW01 for 15 h effectively inhibited P. gingivalis LPS-induced mRNA expression of interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein (MCP)-1. Although both gDNAs did not dose-dependently inhibit P. gingivalis LPS-induced mRNA expression of IL-6 and MCP-1, they inhibited IL-1β mRNA expression in a dose-dependent manner. Moreover, pretreatment with both gDNAs inhibited the secretion of IL-1β, IL-6, and MCP-1. When RAW 264.7 cells were stimulated with P. gingivalis LPS alone, the phosphorylation of mitogen-activated protein kinases (MAPKs) was increased. However, the phosphorylation of MAPKs was reduced in the presence of gDNAs. Furthermore, both gDNAs restored IκBα degradation induced by P. gingivalis LPS, indicating that both gDNAs suppressed the activation of nuclear factor-κB (NF-κB). In summary, P. acidilactici gDNA could inhibit P. gingivalis LPS-induced inflammatory responses through the suppression of MAPKs and NF-κB, suggesting that P. acidilactici gDNA could be effective in preventing periodontitis.

Functional Properties of Yogurt Fermented by Bacteriocin-producing Pediococcus acidilactici (박테리오신 생성 Pediococcus acidilactici 를 적용한 요거트 특성 및 항균성 연구)

  • Hyun, In Kyung;Kim, Min Young;Kim, Seo-Yeon;Lee, Jee-Su;Choi, Ah-Rang;Kang, Seok-Seong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.154-160
    • /
    • 2020
  • Physical and sensory characteristics of commercial yogurts are important aspects for consumer acceptability. In addition, beneficial functions of commercial yogurts are also emphasized for the probiotic dairy products. The aim of this study was to investigate the functional properties of yogurts with the combination of bacteriocin-producing Pediococcus acidilactici. Yogurts fermented with commercial starter culture (control yogurt) and control yogurt together with P. acidilactici HW01 (yogurt+HW01), P. acidilactici JM01 (yogurt+JM01), or P. acidilactici K10 (yogurt+K10) were prepared. During 28 days after fermentation, the viability of lactic acid bacteria, pH, and brix, in the yogurt samples were assessed with standard methods. Moreover, to investigate the antilisterial activity of the yogurt samples, Listeria monocytogenes was simultaneously inoculated when the yogurts were prepared with lactic acid bacteria, and the viability of L. monocytogenes was determined. Although yogurt+K10 did not completely remove L. monocytogenes, control yogurt, yogurt+HW01, and yogurt+JM01 eradicated L. monocytogenes at day 2 after fermentation. However, yogurt+K10 also removed L. monocytogenes at day 3 after fermentation. Taken together, these findings suggest that the combination of yogurt with P. acidilactici does not affect its quality and they may consequently aid in the development of new probiotic yogurt.

Effects of dietary supplementation with Pediococcus acidilactici ZPA017 on reproductive performance, fecal microbial flora and serum indices in sows during late gestation and lactation

  • Liu, Hui;Wang, Sixin;Zhang, Dongyan;Wang, Jing;Zhang, Wei;Wang, Yamin;Ji, Haifeng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.120-126
    • /
    • 2020
  • Objective: This study was conducted to determine the effects of dietary supplementation with Pediococcus acidilactici (P. acidilactici) ZPA017 as a probiotic on reproductive performance, fecal microbial flora and serum indices in sows during late gestation and lactation. Methods: A total of 94 sows (Large White×Yorkshire, average 4.50 parities) were randomly allotted to two dietary treatments: control diet and the diet supplemented with P. acidilactici ZPA017 (2.40×109 colony-forming unit/kg of diets). The study started at d 90 of gestation and conducted until d 28 of lactation. Results: Compared to sows fed the control diet, supplementation of P. acidilactici ZPA017 increased the number of weaning piglets, weaning weight of litter and piglets, survival rate of piglets at weaning (p<0.05), and decreased diarrhea rate of piglets in lactation (p<0.05). Dietary P. acidilactici ZPA017 increased fecal Lactobacillus populations (p = 0.030) and reduced fecal Escherichia coli and Staphylococcus aureus populations (p<0.05) of sows at weaning. Moreover, the supplementation of P. acidilactici ZPA017 increased serum concentrations of immunoglobulin G, immunoglobulin A and total protein (p<0.05), while decreased serum haptoglobin concentration and alanine aminotransferase activity (p<0.05) of sows at weaning. Conclusion: Administration of P. acidilactici ZPA017 in diets during late gestation and lactation had positive effects on the reproductive performance, intestinal microflora balance and immunity of sows.

Isolation of the Alcohol-Tolerant Lactic Acid Bacteria Pediococcus acidilactici K3 and S1 and their Physiological Characterization (알코올 내성 젖산균 Pediococcus acidilactici K3와 S1의 분리 및 생리적 특성)

  • Jang, Danbie;Park, Seulki;Lee, Hyunjoo;Pyo, Sangeun;Lee, Han-Seung
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.4
    • /
    • pp.442-448
    • /
    • 2013
  • Lactic acid bacteria (LAB) are a representative group of probiotics and used in many fermented foods and beverages. Several recent studies have shown that LAB are present in makgeolli which is a traditional Korean alcoholic beverage. However, most LAB are intolerant of more than 6% (v/v) alcohol concentrations. For this reason, alcohol-tolerant LAB are isolated from kimchi, makgeolli and nuruk using alcohol containing selective media. After being cultured in MRS broth containing 13% (v/v) alcohol, the two strains which showed the highest increasing O.D values, were finally selected. As results of 16S rRNA gene sequencing and biochemical characterization using an API kit, the two species were identified as Pediococcus acidilactici K3 and S1. In addition, the identified two strains produced bacteriocins against Staphylococcus aureus. When compared with the P. acidilactici type strain, the two selected strains possessed two to three time higher growth on 12-13% (v/v) alcohol containing MRS broth. The viability of P. acidilactici K3 and S1 when inoculated in makgeolli and stored at $10^{\circ}C$ did not decrease through a period of one month indicating that the selected strains can be used for LAB containing makgeolli.

Synergistic Effects of Bacteriocin-Producing Pediococcus acidilactici K10 and Organic Acids on Inhibiting Escherichia coli O157:H7 and Applications in Ground Beef

  • Moon, Gi-Seong;Kim, Wang-June;Kim, Myung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.936-942
    • /
    • 2002
  • When used in combination with organic acids, Pediococcus acidilactici K10 or its bacteriocin was effective in inhibiting Escherichia coli O157:H7 in vitro and in situ. P. acidilactici K10, a strain of bacteriocin-producing lactic acid bacteria (LAB), was previously isolated from kimchi in our laboratory, and the molecular weight of its bacteriocin was estimated to be around 4,500 Da by SDS-PAGE. Initially, P. acidilactici K10 and its bacteriocin could not inhibit E. coli O157:H7, when used alone. However, when they were used together with organic acids such as acetic, lactic, and succinic acids, they greatly inhibited E. coli O157:H7 in vitro. Based on these in vitro results, a real sample test with ground beef was conducted at $4^{\circ}C$ with acetic acid (0.25%) or lactic acid (0.35%) alone, and then in combination with P. acidilactici K10 (10^5 CFU/g of sample). Combined treatment of P. acidilactici K10 with lactic acid showed the most inhibitory effect: a 2.8-$log_{10}$-unit reduction of E. coli O157:H7 in ground beef during storage at $4^{\circ}C$. This result suggests that the combination of bacteriocin-producing P. acidilactici K10 and organic acids has great potential as a food biopreservative by inhibiting the growth of E. coli O157:H7.