• Title/Summary/Keyword: Penisetum Purpureum

Search Result 3, Processing Time 0.018 seconds

The Intake and Palatability of Four Different Types of Napier Grass (Pennisetum purpureum) Silage Fed to Sheep

  • Manyawu, G.J.;Sibanda, S.;Chakoma, I.C.;Mutisi, C.;Ndiweni, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.823-829
    • /
    • 2003
  • Four different types of silage from new cultivars of Napier grass (Pennisetum purpureum), cv. NG 1 and NG 2, were fed to eight wethers in order to evaluate their preference and intake by sheep. The silages were prepared from direct-cut NG 1 herbage; pre-wilted NG 1 herbage; NG 1 herbage with maize meal (5% inclusion) and NG 2 herbage with maize meal (5% inclusion). All silages were palatable to sheep. Maize-treated silage had high quality fermentation, characterized by high Fleig scores and low pH, volatile fatty acids (VFA) and ammoniacal nitrogen contents. The pH, Fleig score, in vitro digestible organic matter (IVDOMD) and ammoniacal-N contents for maize-treated cv. NG 1 silage were 3.7, 78, $540g\;kg^{-1}$ dry matter (DM ) and $0.18g\;kg^{-1}$ DM whereas, in maize-treated cv. NG 2 they were 3.6, 59, $^458g\;kg{-1}$ DM and $0.18g\;kg^-1$ DM, respectively. The superior quality of maize-treated silages made them more preferable to sheep. Among the maize-fortified silages, palatability and intake were significantly (p<0.001) greater with cv. NG 1. Although direct-cut silage had better fermentation quality compared to wilted silage, wilted silage was significantly (p<0.001) more preferable to sheep. However, there were no significant differences (p<0.05) in the levels of preference and intake of wilted silage compared to maize-treated cv. NG 2 silage, even though the latter tended to be more palatable. There were indications that high pH (4.6 vs 3.5) and IVDOMD content (476 vs $457g\;kg^{-1}%$ DM) of wilted silage contributed to higher intake, compared to direct-cut silage. It was generally concluded that pre-wilting and treatment of Napier grass with maize meal at ensiling enhances intake and palatability.

Nutrient Balance and Glucose Metabolism of Female Growing, Late Pregnant and Lactating Etawah Crossbred Goats

  • Astuti, D.A.;Sastradipradja, D.;Sutardi, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1068-1075
    • /
    • 2000
  • A study involving nutrient balances and radioisotope labeling techniques was undertaken to study energy and protein metabolism, and glucose kinetics of female crossbred Etawah goats, using 12 weaned (BW $14.0{\pm}2.0kg$), 12 late pregnant (BW $27.8{\pm}1.8kg$) and 12 first lactation does (BW $25.0{\pm}5.0kg$). Each class of animal was randomly allotted into 3 dietary treatment groups R1, R2 and R3, that received 100%, 85%, and 70% of ad libitum feed. The rations offered were pellets containing 21.8% CP and 19.3 MJ GE/kg, except for the lactating does who received pellets (17.2% CP and 18.9 MJ GE/kg) and fresh Penisetum purpureum grass. Energy and nitrogen balance studies were conducted during a two-week trial. Daily heat production (HP, estimated by the carbon dioxide entry rate technique), glucose pool and flux were measured. Equations were found for metabolizable energy (ME) and protein intake (IP) requirements for growing goats: ME (MJ/d)=1.87+0.55 RE-0.001 ADG+0.044 RP $(R^2=0.89)$ and IP (g/d)=48.47+2.99 RE+0.029 ADG+0.79 RP $(R^2=0.90)$; for pregnant does: ME (MJ/d)=5.92+0.96 RE-0.002 ADG+0.003 RP $(R^2=0.99)$ and IP (g/d)=58.34+5.41 RE+0.625 ADG-0.30 RP $(R^2=0.98)$; and for lactating does: ME (MJ/d)=4.23+0.713 RE+0.003 ADG+0.006 RP+0.002 MY $(R^2=0.86)$; IP (g/d)=84.05-5.36 RE+0.055 ADG-0.16 RP+0.068 MY $(R^2=0.45)$, where RE is retained energy (MJ/d), ADG is average daily gain in weight (g/d), RP is retained protein (g/d) and MY is milk yield (ml/d). ME and IP requirements for maintenance for growing goats were 0.46 MJ/d.kg $BW^{0.75}$ and 7.43 g/d.kg $BW^{0.75}$, respectively. Values for the pregnant and lactating does were in the same order, 0.55 MJ/d.kg $BW^{0.75}$ and 11.7 g/d.kg $BW^{0.75}$, and 0.50 MJ/d.kg $BW^{0.75}$ and 10.8 g/d.kg $BW^{0.75}$, respectively. Milk protein ranged from 3.06 to 3.5% and milk fat averaged 5.2%. Glucose metabolism in Etawah crossbred female goat is active, but glucose flux is low compared to temperate ruminant breeds which may implicate its role to support production.

Nutrient Utilization, Body Composition and Lactation Performance of First Lactation Bali Cows (Bos sondaicus) on Grass-Legume Based Diets

  • Sukarini, I.A.M.;Sastradipradja, D.;Sutardi, T.;Mahardika, IG.;Budiarta, IG.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.12
    • /
    • pp.1681-1690
    • /
    • 2000
  • A study on energy and protein utilization, and milk production of Bali cows on grass-legume diets was carried out using 12 first lactation cows (initial BW $263.79{\pm}21.66kg$) during a period of 16 weeks starting immediately post calving. The animals were randomly allotted into 4 dietary treatment groups R1, R2, R3 and R4, receiving from the last 2 months of pregnancy onwards, graded improved rations based on a mixture of locally available grass and legume feed ad libitum. R1 contained on a DM basis 70% elephant grass (PP, Penisetum purpureum) plus 30% Gliricidia sepia leaves (GS), R2 was 30% PP plus 55% GS supplemented with 15% Hibiscus tilliactus leaves (HT, defaunating effect), R3 and R4 were 22.5% PP+41.25% GS+11.25% HT+25% concentrate, where R3 was not and R4 supplemented with zinc di-acetate. TDN, CP and zinc contents of the diets were 58.2%, 12.05% and 18.3 mg/kg respectively for R1, 65.05%, 16.9% and 25.6 mg/kg respectively for R2, 66.03%, 16.71% and 29.02 mg/kg respectively for R3 and 66.03%, 16.71% and 60.47 mg/kg respectively for R4. Milk production and body weight were monitored throughout the experimental period. In vivo body composition by the urea space technique validated by the body density method and supported by carcass data was estimated at the start and termination of the experiment. Nutrient balance and rumen performance characteristics were measured during a balance trial of 7 days during the 3rd and 4th week of the lactation period. Results indicated that quality of ration caused improvement of ruminal total VFA concentration, increments being 52 to 65% for R2, R3 and R4 above R1, with increments of acetate being less (31 to 48%) and propionate being proportionally more in comparison to total VFA increments. Similarly, ammonia concentrations increased to 5.24 to 7.07 mM, equivalent to 7.34 to 9.90 mg $NH_3-N/100ml$ rumen fluid. Results also indicated that feed quality did not affect DE and ME intakes, and heat production (HP), but increased GE, UE, energy in milk and total retained energy (RE total) in body tissues and milk. Intake-, digestible- and catabolized-protein, and retained-protein in body tissues and milk (Rprot) were all elevated increasing the quality of ration. Similar results were obtained for milk yield and components with mean values reaching 2.085 kg/d (R4) versus 0.92 kg/d (R1) for milk yield, and 170.22 g/d (R4) vs 71.69 g/d (R1), 105.74 g/d (R4) vs 45.35 g/d (R1), 101.34 g/d (R4) vs 46.36 g/d (R1) for milk-fat, -protein, and -lactose, respectively. Relatively high yields of milk production was maintained longer for R4 as compared to the other treatment groups. There were no significant effects on body mass and components due to lactation. From the relationship $RE_{total}$ (MJ/d)=12.79-0.373 ME (MJ/d); (r=0.73), it was found that $ME_{m}=0.53MJ/kgW^{0.75}.d$. Requirement of energy to support the production of milk, ranging from 0.5 to 3.0 kg/d, follows the equation: Milk Prod. ($Q_{mp}$, kg/d)=[-2.48+4.31 ME($MJ/kg^{0.75}.d$)]; (r=0.6) or $Q_{mp}$=-3.4+[0.08($ME-RE_{body\;tissue}$)]MJ/d]; (r=0.94). The requirement for protein intake for maintenance ($IP_m$) equals $6.19 g/kg^{0.75}.d$ derived from the relationship RP=-47.4+0.12 IP; (r=0.74, n=9). Equation for protein requirement for lactation is $Q_{nl}$=[($Q_{mp}$)(% protein in milk)($I_{mp}$)]/100, where $Q_{nl}$ is g protein required for lactation, $Q_{mp}$ is daily milk yield, Bali cow's milk-protein content av. 5.04%, and $I_{mp}$ is metabolic increment for milk production ($ME_{lakt}/ME_{m}=1.46$).