• Title/Summary/Keyword: Performance Monitoring

Search Result 3,529, Processing Time 0.034 seconds

Implementation of Web-based Performance Monitoring System for E-Mail Server (전자메일 서버의 웹 기반 성능 모니터링 시스템 구현)

  • Lee, Seung-Sup;Hwang, Min-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2105-2112
    • /
    • 2013
  • In this paper we implemented a web-based performance monitoring system for web mail server. For this system we derived performance monitoring items and fixed its threshold values for each measuring items. We used the SCOM 2007 server monitoring tool for collecting the performance data of web mail server and Exchange server management pack and server monitoring rules of SCOM 2007 to set the performance analysis parameters. We implemented this performance monitoring system using C# programming based on the ASP.NET framework. This system supports web-based performance report, failure report and resource availability report from the performance analysis results. Therefore the manager can easily detect the failures of web mail server in advance and decrease the number of failure over 60%. Also this system helps manager to minimize the recovery time when the failure occurs.

Development of Wireless Monitoring System for Layers Rearing in Multi-tier Layers Battery by Machine Vision (기계시각을 이용한 고단 직립식 산란계 케이지의 무선 감시시스템 개발)

  • Lim, Song-Su;Chang, Dong-Il;Lee, Seung-Joo;So, Jae-Kwang
    • Journal of Biosystems Engineering
    • /
    • v.32 no.3
    • /
    • pp.173-178
    • /
    • 2007
  • This research was conducted to develop and analyze a wireless monitoring system for judging if sick or dead layers (SDL) exist in multi-tier layers battery (MLB) by machine vision, and to evaluate the performance between a wired monitoring system and it. This study used the AP (Access Point), the RS-285 to RS-232 converter, RS-232 to Ethernet converter, PICBASIC board and upgraded lump image processing method to change wired monitoring system into wireless monitoring system. The system was tested at a pilot farm and farm layer house. Results showed that monitoring judgement success rate at a pilot farm on normal cage (without SDL) was 82.3% and that on abnormal cage (with SDL) was 87.5%, respectively. And communication performance test results showed at farm layer house was $700{\sim}900$ kbps while equipments operated. There were dropped slightly than performance of wired monitoring system, however, the quantity was too small to make a significant difference of performance of the controling system developed for wireless communication.

Influence line- model correction approach for the assessment of engineering structures using novel monitoring techniques

  • Strauss, Alfred;Wendner, Roman;Frangopol, Dan M.;Bergmeister, Konrad
    • Smart Structures and Systems
    • /
    • v.9 no.1
    • /
    • pp.1-20
    • /
    • 2012
  • In bridge engineering, maintenance strategies and thus budgetary demands are highly influenced by construction type and quality of design. Nowadays bridge owners and planners tend to include life-cycle cost analyses in their decision processes regarding the overall design trying to optimize structural reliability and durability within financial constraints. Smart permanent and short term monitoring can reduce the associated risk of new design concepts by observing the performance of structural components during prescribed time periods. The objectives of this paper are the discussion and analysis of influence line or influence field approaches in terms of (a) an efficient incorporation of monitoring information in the structural performance assessment, (b) an efficient characterization of performance indicators for the assessment of structures, (c) the ability of optimizing the positions of sensors of a monitoring system, and (d) the ability of checking the robustness of the monitoring systems applied to a structure. The proposed influence line- model correction approach has been applied to an integrative monitoring system that has been installed for the performance assessment of an existing three-span jointless bridge.

Structural performance monitoring of an urban footbridge

  • Xi, P.S.;Ye, X.W.;Jin, T.;Chen, B.
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.129-150
    • /
    • 2018
  • This paper presents the structural performance monitoring of an urban footbridge located in Hangzhou, China. The structural health monitoring (SHM) system is designed and implemented for the footbridge to monitor the structural responses of the footbridge and to ensure the structural safety during the period of operation. The monitoring data of stress and displacement measured by the fiber Bragg grating (FBG)-based sensors installed at the critical locations are used to analyze and assess the operation performance of the footbridge. A linear regression method is applied to separate the temperature effect from the stress monitoring data measured by the FBG-based strain sensors. In addition, the static vertical displacement of the footbridge measured by the FBG-based hydrostatic level gauges are presented and compared with the dynamic displacement remotely measured by a machine vision-based measurement system. Based on the examination of the monitored stress and displacement data, the structural safety evaluation is executed in combination with the defined condition index.

Sensor Based Bridge Monitoring System (센서기반 교량 유지관리 시스템)

  • 장정환;김완종;안호현;이세호;정태영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.602-607
    • /
    • 2003
  • Sensors based bridge monitoring system (SBBMS) is designed to perform real-time monitoring and to store the performance history of in-service bridges. In general, visual inspections play a major role in maintenance of in-service bridges; however, they are not adequate to document the behavior of a bridge. Therefore, visual inspections and sensor based monitoring systems complement each other. Sensor based bridge monitoring systems consist of hardware and software systems. The hardware system contains the sensors and data-loggers to measure the behavior of a structure, the communicational equipment to transmit the measured data from the site to the monitoring center, and the computers to arrange and analyze the data. The software system controls data-loggers, arranges and analyzes the measured data, makes real-time display, stores the performance history.

  • PDF

Performance Analysis of Adaptive Partition Cache Replacement using Various Monitoring Ratios for Non-volatile Memory Systems

  • Hwang, Sang-Ho;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • In this paper, we propose an adaptive partition cache replacement policy and evaluate the performance of our scheme using various monitoring ratios to help lifetime extension of non-volatile main memory systems without performance degradation. The proposal combines conventional LRU (Least Recently Used) replacement policy and Early Eviction Zone (E2Z), which considers a dirty bit as well as LRU bits to select a candidate block. In particular, this paper shows the performance of non-volatile memory using various monitoring ratios and determines optimized monitoring ratio and partition size of E2Z for reducing the number of writebacks using cache hit counter logic and hit predictor. In the experiment evaluation, we showed that 1:128 combination provided the best results of writebacks and runtime, in terms of performance and complexity trade-off relation, and our proposal yielded up to 42% reduction of writebacks, compared with others.

APPLICATION OF MONITORING, DIAGNOSIS, AND PROGNOSIS IN THERMAL PERFORMANCE ANALYSIS FOR NUCLEAR POWER PLANTS

  • Kim, Hyeonmin;Na, Man Gyun;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.737-752
    • /
    • 2014
  • As condition-based maintenance (CBM) has risen as a new trend, there has been an active movement to apply information technology for effective implementation of CBM in power plants. This motivation is widespread in operations and maintenance, including monitoring, diagnosis, prognosis, and decision-making on asset management. Thermal efficiency analysis in nuclear power plants (NPPs) is a longstanding concern being updated with new methodologies in an advanced IT environment. It is also a prominent way to differentiate competitiveness in terms of operations and maintenance costs. Although thermal performance tests implemented using industrial codes and standards can provide officially trustworthy results, they are essentially resource-consuming and maybe even a hind-sighted technique rather than a foresighted one, considering their periodicity. Therefore, if more accurate performance monitoring can be achieved using advanced data analysis techniques, we can expect more optimized operations and maintenance. This paper proposes a framework and describes associated methodologies for in-situ thermal performance analysis, which differs from conventional performance monitoring. The methodologies are effective for monitoring, diagnosis, and prognosis in pursuit of CBM. Our enabling techniques cover the intelligent removal of random and systematic errors, deviation detection between a best condition and a currently measured condition, degradation diagnosis using a structured knowledge base, and prognosis for decision-making about maintenance tasks. We also discuss how our new methods can be incorporated with existing performance tests. We provide guidance and directions for developers and end-users interested in in-situ thermal performance management, particularly in NPPs with large steam turbines.

A Study on Performance Analysis of Articulated Robot System for Smart Factory Based on Monitoring Simulator

  • Kim, Hee Jin;Kim, Dong-ho;Jung, Kum-jun;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_1
    • /
    • pp.889-896
    • /
    • 2020
  • We describe a new approach to the analyze the control performance of robotic manipulator based on the monitoring system. The structure of monitoring simulator is consist of seven modes such as control state mode, coordinate mode, input/output mode, program mode, parameters mode, and track mode. The applied control algorithme consists of an time varying feed-forward and feedback controller. The proposed scheme is simple in structure, fast in computation, and suitable for real-time implimemtation. Moreover, this scheme does not require any accurate dynamic modeling and values of parameters. Performance of the proposed monitoring system is illustrated by simulation and experiment for robot manipulator with six degrees of freedom.

The Development of the Monitoring System for Power performance using the Lab View (LabView를 이용한 풍력발전 성능평가용 모니터링 시스템 개발)

  • Ko, Seok-Whan;Jang, Moon-Seok;Ju, Young-Chul;Lee, Yoon-Sub
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.69-74
    • /
    • 2009
  • Monitoring system is an absolutely-required system for assessing a performance and fatigue load of the wind turbine in an on-shore wind energy experimental research complex. It was implemented for the purpose of monitoring the wind information measured from a meteorological tower at the monitoring house, and of utilizing the measured data(fatigue data and electric analyzing data of wind turbine)for the performance assessment, by using the LabVIEW program. Then, by adding the performance assessment-related data acquired from the wind turbine during the performance assessment and the data recorder for synchronizing the data of meteorological tower, the system(BusDAQ) was implemented. Because it transmitted the data by converting the output 'RS-232' of data logger which measures the wind condition into CAN protocol, the data error rate was minimized. Also, This paper is introduced to make the best use of the developed monitoring system and to explain about construct of the system and detailed data communication of its system.

Distributed System Architecture Modeling of a Performance Monitoring and Reporting Tool (분산 시스템의 성능 모니터링과 레포팅 툴의 아키텍처 모델링)

  • Kim, Ki;Choi, Eun-Mi
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.3
    • /
    • pp.69-81
    • /
    • 2003
  • To manage a cluster of distributed server systems, a number of management aspects should be considered in terms of configuration management, fault management, performance management, and user management. System performance monitoring and reporting take an important role for performance and fault management. In this paper, we present distributed system architecture modeling of a performance monitoring and reporting tool. Modeling architecture of four subsystems are introduced: node agent, data collection, performance management & report, and DB schema. The performance-related information collected from distributed servers are categorized into performance counters, event data for system status changes, service quality, and system configuration data. In order to analyze those performance information, we use a number of ways to evaluate data corelation. By using some results from a real site of a company and from simulation of artificial workload, we show the example of performance collection and analysis. Since our report tool detects system fault or node component failure and analyzes performances through resource usage and service quality, we are able to provide information for server load balancing, in short term view, and the cause of system faults and decision for system scale-out and scale-up, in long term view.

  • PDF